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Preface 

This document does not pretend to be an exhausive account of 
quaternions and where they reside in the abstract algebraic land- 
scape. In fact, for those interested in these more sophisticated 
matters, read no further. There is the book by 

S.L.Altmann, Rotations, Quaternions, and Double 
Groups, Clarendon Press, Oxford 1986 

which may be more appropriate for you. Moreover, Altmanns' 
book has a very large bibliography which surely will have what 
you want. 

This document on-the-other-hand presents an elementary in- 
troduction to the quaternion, its algebra and its applications, 
which is hopefully accessible to anyone with a modest back- 
ground in early undergraduate college mathematics. Even the 
applications should be within the reach of most readers of that 
ilk. 

The quaternion operator has long been regarded as an ef- 
ficient rotation operator but one that is not well known in the 
practicing aerospace engineering community. So, we first present 
an engaging and readable account of the origin and history of 
the quaternion. This we follow with an elementary introduction 
to quaternion algebra which is presented in a rigorous yet an 
easily accessible do-it-yourself fashion. 

iii 



The problem of computing multiple coordinate transforma- 
tions for rigid body motions (rotations), especially for ground- 
based flight simulation and terrain portrayal displays, is en- 
countered time and again in Aerospace applications and opera- 
tions. These processes are usually performed using rotation ma- 
trices based upon Euler angle or direction cosine formulations. 
Quaternions are 4-tuples whereas the 3x3 rotation matrices, of 
course, have nine elements. Moreover, the singularity problem 
encountered in composite rotation matrices is avoided when us-, 
ing the quaternion rotation operator. 

This document, which could serve as a reference text, con- 
tains a variety of interesting applications and ideas. Among 
these are the various possible Euler angle sequences and alter- 
native tracking transformations. Specific strategies for the com- 
putation of great-circle courses and for determining an Orbit 
Ephemeris are presented. Finally, an in-depth presentation of 
some processing strategies similar to those currently employed 
in a variety of military and non-military visually-coupled control 
system applications, e.g. the USAF Helmet-mounted Sight1, are 
presented using both rotation matrices and quaternion rotation 
operators. 

'The first six degree-of-freedom electromagnetic position and orientation 
measurement transducing system, more commonly known as the Polhemus 
Tracker, was first conceived and patented by the author. This technology, 
currently owned by The MacDonnell-Douglas Corporation, is being manu- 
factured and further developed for military and non-military applications 
by The Kaiser Electronics Corporation. The first quaternion processors for 
these systems were also introduced by the author. 
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Chapter 1 

HISTORICAL 
MATTERS 

1.1    Introduction 
Mathematics, as with most subjects in science and engineering, 
has a long and varied history. Although it is an over simplifica- 
tion of a complex subject, it is safe to say that in general the 
practice of mathematical techniques preceded the development 
of firm theoretical foundations for the subject. These tended to 
come later. 

Historians of mathematics are generally agreed that in this 
connection three highly significant developments occurred dur- 
ing the nineteenth century. These were the development of non- 
Euclidean geometry, of a non-commutative algebra, and of a 
precise theoretical foundation for calculus. 

Early on it was thought that geometry was limited to what 
was known as Euclidean Geometry, and it was only through ex- 
tensive researches into the parallel line postulate as formulated 
by Euclid that other geometries were developed and found to be 
consistent. For calculus, and analysis in general, the formulation 
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of a precise theory of limits was a significant step. 

For many years algebra was thought simply to be general- 
ized arithmetic, in the sense that although letters were used to 
represent the objects under study, all of the ordinary rules of op- 
eration for arithmetic were valid in the algebraic manipulations 
as well. Consistent with the spirit of the times, in which the 
search for more precise theoretical foundations in mathematical 
thinking received more emphasis, mathematicians working in 
the area of algebra began to focus more sharply on such matters 
of algebraic structure as closure, commutativity, and associativ- 
ity for algebraic operations. 

It was in this context that William Rowan Hamilton intro- 
duced his algebra of quaternions which, to the total surprise of 
the mathematical community, violated the law of commutativity 
for multiplication. What seemed to mathematicians of the day 
to be impossible was to have an otherwise consistent algebra for 
which this fundamental property of the algebra of real numbers 
did not hold. 

According to Howard Eves [1], it was work such as that done 
by Hamilton which 

"opened the floodgates of modern abstract algebra. By weak- 

ening or deleting various postulates of common algebra, or by 

replacing one or more of the postulates by others, which are 

consistent with the remaining postulates, an enormous variety 

of systems can be studied. As some of these systems we have 

groupoids, quasigroups, loops, semi-groups, monoids, groups, 

rings, integral domains, lattices, division rings, Boolean rings, 

Boolean algebras, fields, vector spaces, Jordan algebras, and 

Lie algebras, the last two being examples of non-associative 

algebras. It is probably correct to say that mathematicians 

have, to date, studied well over 200 such algebraic structures." 
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Our intent in these pages is to explore the use of Hamil- 
ton's quaternions in studying certain transformations in ordi- 
nary space of three dimensions. It must be said that it was 
not long after the publication of Hamilton's results that Josiah 
Willard Gibbs and others began to work out the details of what 
we know today as the algebra of vector spaces, and Hamilton's 
work seemed quickly to be eclipsed. Recently, however, interest 
in the use of quaternions has revived, and we want to consider 
ways in which quaternion algebra may still be more effective 
than the use of ordinary vector algebra. 

1.2    Mathematical Systems 

By the set of real numbers we shall mean all numbers which 
may be represented in decimal form. These include the natural 
numbers, the integers, and the rational numbers. 

The set of natural numbers is the set of numbers whose arith- 
metic is studied in the elementary school, namely, the set 

JV = {1,2,3,4,-} 

We mention that this set is closed under addition and multipli- 
cation, that is the sum of any two natural numbers is again a 
natural number, and the product of any two natural numbers is 
also a natural number. However, the set of natural numbers is 
not closed under subtraction or division, since there are natural 
numbers, say 3 and 5, whose difference 

3 - 5 = -2 

is not a natural number. Clearly, the same is true for the quo- 
tient of natural numbers. 

The set of integers is the set 

Z={ 3,-2,-1,0,1,2,3, •••} 

The Real Number Line 

-oo 0        1 oo 
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which includes the natural numbers as a subset. This set has 
the advantage that it is closed under addition, multiplication, 
and also subtration. Notice that the difference between any two 
integers is always another integer. However, the integers are not 
closed under division. 

To obtain this fourth property we need the set of rational 
numbers, namely, the set of all possible quotients of the inte- 
gers, except that division by zero is excluded. Thus the rational 
numbers is 

Q = {P/Q I PA integers with q ^ 0} 

This set includes both the natural numbers and the integers 
as subsets and is closed under all four of the ordinary operations 
of arithmetic. It exhibits the mathematical structure which ear- 
lier mathematicians began to recognize what in abstract algebra 
today is called a field. The set R of real numbers, with the two 
ordinary operations of addition and multiplication, is another 
example of a field. 

This mathematical system is one that is familiar to all of us, 
and exhibits the following field properties: 

1. Closure under the operations, that is if a and b are real 
numbers so are a + b and a • b 

2. Both of the operations are associative, that is, if a, b, and 
c are real numbers, 

(a + b) + c   =   a + (b + c) 

and (a-b) • c   =   a- (b- c) 

3. Both of the operations are commutative, that is, 

a+b   =   b+a 

and a-b   =   b • a 
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4. There is an identity for addition, say, 0, with the property 
that 

a + 0 = 0 + a = a 

for every real number a 

5. There are inverses for addition, that is, for every real num- 
ber a there is a real number, say, -a , such that 

a + (-a) = (-a) + a = 0 

6. There is an identity for multiplication, say 1, such that 

a ■ 1 = 1 • o = a 

for every real number a. Further, 1^0. 

7. There are inverses for multiplication, that is, for every real 
number a, not equal to 0, there is a real number, say a'1, 
such that 

a-1 ■ a = a- a-1 = 1 

8. Multiplication is distributive over addition, that is for any 
real numbers a, b, and c we have 

a-(b + c) = a-b + a-c 

These properties for ordinary arithmetic of real numbers were 
thought to hold for all algebraic structures; hence it was so sur- 
prising that Hamilton's quaternions were a consistent algebraic 
system, yet violated property 3, the commutativity of multipli- 
cation. 
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Im 

(a,b) 

Re 

Complex Plane 

1.3    Complex Numbers 

Another example of a mathematical system which has the field 
properties is that of the complex numbers. It was in the 16th 
century that the Italian algebraist Bombelli, after Cardan and 
Tartaglia, had what he called a "wild thought." This wild thought 
seems to have been the precursor of the notion of complex num- 
bers, including the idea of the complex conjugate. However it 
was not until the work of Gauss in the early 19th century that 
the algebra of complex numbers was given a firm mathematical 
basis. Since the square of a real number is always non-negative, 
there is, of course, no solution in the set of real numbers for the 
equation 

z2 + 62 = 0 

or perhaps more generally for quadratic equations of the form 

x2 - 2ax + a2 + b2 = 0 

for any non-zero real numbers a and b. But today the numbers 
which satisfy these two equations are well-known even to most 
high school students as 

x   =   ±  \b 

and   x   =   a± ib 

respectively. Here i is the now familiar square root of —1, having 
the property that i2 = -1. In the complex number, a + ib, we 
often identify a as the real part and the b as the imaginary part. 

We must be clear, however, what we mean when we write 
a+ib, since the symbol i does not represent a real number. More 
specifically, what does it mean to write the product ib when we 
know that i is not a real number. A mathematically acceptable 
way to answer this question is to identify our representation of 
the complex number 

a + ib 
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with the pair (a, b) of real numbers a and b. In this format, 
however, we must first define equality for complex numbers by 
stating 

(a, b) = (c, d) 

if and only if 
a = c      and      b = d 

That is to say, two complex numbers are equal if and only if 
their real parts are equal and their imaginary parts are equal. 

Next, in this format, we define the sum and the product of 
two complex numbers by the equations 

(a, b) + (c, d) =    (a + c, b + d) 

and     (a, b) (c, d) =    (ac - 6d, ad + be) 

We now relate this ordered pair format to 

the usual a + ib notation by 

making the following associations 

(a, 0) <-»   a 

and     (0,1) <-*   i 

Using Equations 1.1 and 1.2 we may now compute 

i2   =   (0,1)(0,1) =   (-1,0)   =   -1 

(1.1) 

(1.2) 

so that     (0,1)   =   i   =    V^l 

We may then write     (a, b)    =    (a,0) + (0,1)(6,0) 

=   a + ib 

(1.3) 

(1.4) 

It is not difficult to show that the difference and quotient of 
complex numbers are given by the equations 

(a, b) - (c, d)   =   (a - c, 6 - d) 
(a, b) ac + bd be —ad. 
J^d)   =   VTd2~''c2 + d2) 

This foregoing development may be used to define the arithmetic 
operations on complex numbers, and to verify that with these 

This rigorously establishes and 
justifies the notation 

2 = (a, 6) = a + 16 

from this point on, for the most 
part, the arguments and proofs 
presented will be more intuitive 
and hueristic — an approach 
which is more appropriate for our 
purposes. 
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definitions the set of complex numbers does indeed satisfy all 
of the field properties. We wish, however, to use an approach 
which may be more familiar to the reader. 

The algebra of complex numbers is usually defined by assum- 
ing that the algebra of real numbers holds for complex numbers 
as well, except that i2 = —1. This means that for addition and 
subtraction we have 

(a + ib) + (c + id)   =   {a + c) + i(b + d) (1.5) 

and    (a + ib) - (c + id)   =   (a - c) + i(6 - d) (1.6) 

In like fashion, multiplication is defined as 

(a + i&) x (c + id)   =   ac + \bc + iad + i 2bd 

=   (ac - bd) + i(bc + ad)       (1.7) 

It should be mentioned that in the context of complex numbers, 
vector spaces, or even quaternions, a real number is often called 
a scalar. If in the above definition of the product of two complex 
numbers we set b = 0 , then we get a product of the scalar a 
and the complex number c + id as 

a(c + id) = ac + iad 

To compute the quotient of two complex numbers, we first note 
that the product 

(c + id)(c-id) = c2 + d2 

is always a real number. We then write 

a + ib   _    (a + ib)(c — id) 
c + id (c + id)(c- id) 

ac + bd     .be — ad .     . 

In particular, we may now compute the reciprocal of c + id as 

1        =   (C+id)-1    =    -^-S-i^-n (1-9) c + id       v ' c2 + d2      c2 + d2 
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1.4    Polar Representation 

In order to make a connection with Hamilton's quaternions, we 
next mention the geometric interpretation of complex numbers. 
This interpretation results from identifying the complex number 
(a, b), that is a + ib, with the corresponding point (a, b) in a co- 
ordinatized plane, as in the figure in the margin. 

For each complex number z = (a, b) we can define a magni- 
tude by 

\z\ = Va2 + 62 

and an angle (often called the argument) by 

arg(z) = 9 

where 9 is an angle defined by 

tanö = b/a 

Thus, for example, the magnitude of the complex number 

z = (l,l) 

is 

while the corresponding angle is 

9 = arctan(l) = 45 degrees 

or in radian measure, 7r/4. 

Often a geometric interpretation of a complex number z = 
(a, b) is made by identifying the number with the two dimen- 
sional vector (a, b), which we may think of as a vector from the 
origin to the point (a, b) in the plane. In that case the magni- 
tude of the complex number is simply the length of the vector 

(a.b) 

Re 

Complex Plane 
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1 2 3 
Vector Addition 

and the angle of the complex number is the angle between the 
vector and the positive X-axis. Geometrically, then, how are 
the addition and multiplication of complex numbers to be inter- 
preted? 

It is easy to see that addition of complex numbers corre- 
sponds exactly to the ordinary parallelogram law for adding 
vectors. In fact, if we think of a vector in two dimensions as 
the ordered pair (a, b) the rule for adding vectors is exactly the 
same as that for adding complex numbers, as shown by the ex- 
ample in the figure in the margin. 

In the case of multiplication for complex numbers, it turns 
out that the magnitude of the product is equal to the product 
of the magnitudes of the factors, and the angle of the product is 
the sum of the angles of the two factors. This fact is apparent 
if we represent the complex number in trigonometric form. If 
z = (a,b), \z\ = r, and arg(z) = 0, we learn from highschool 
trigonometry of a right triangle that 

a = r cos 0   and   b = r sin 0 

Thus we may write 

Since by definition 

we may write 

z   =   (a,b)   =   a + ib 

=   r cos 0 + ir sin 0 
—   r(cos0 + isin0) 

jo =   cos 0 + i sin 0 
Jo z   =   re (1.10) 

where r is the magnitude or amplitude and 0 is the angle or 
argument of z. Thus if we have 

Z\   =   T\ (cos a + i sin a)    =   riela 

z-2,   —   r2(cos/? + isin/3)    =   r2e
I/? 

(1.11) 

(1.12) 
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then 

Zlz2   =   nr2(cos a + i sin a)(cos ß + i sin ß) 

=   rxr2(cos a cos ß + i2 sin a sin ß 

+i sin a cos ß + i cos a sin ß) 

=   rir2[(cosacos/?-sinasin/?) 

+i(sin a cos ß + cos a sin ß)\ 

—   rir2[cos(a + ß) + i sin(a + ß)] 

(1.13) 

=   rir2e ,i(a+0) (1.14) 

Hence it appears that magnitudes are multiplied while the an- 
gles are added. Were we to limit ourselves to complex num- 
bers of magnitudes 1, then multiplication by a complex number 
amounts to a rotation in the plane. For example, suppose we 
multiply the vector (1,1) by the vector i = (0,1). Note that 

|i| = |(0,l)| = x/OM:P = l 

and arg(i) = 7r/2 radians 

The result is the vector (-1,1), which is the original vector (1,1) 
rotated through an angle n/2, as in the figure in the margin. 

Perhaps at this point it is worth noting that summing two 
complex numbers, say, zx and z2, in polar form quite obviously is 
not the preferred way to merely get the desired sum. However, 
working through this summing process anyway does provide a 
proof of the well-known cosine law for triangles. We have 

zi + z2   =   (neia) + (r2e
iß) 

=   (rx cos a + r2 cos ß) + i(rx sin a + r2 sin ß) 

and we can write 
R   =   y/(ri cos a + r2 cos ß)2 + (rx sin a + r2 sin ß)2 

=   yJr2 + rl + 2r1r2cos(a-ß) 

or R2   =   r2 + rl + 2rir2cos{a-ß) (1.15) 

where R is the magnitude of the vector sum of Z\ and z2. 

v= (1,1) 

-l i 
Multiplying v by i rotates v 
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v = (l,l) 

-1 1 
Multiplying v by i rotates v 

1.5    Hyper-complex Numbers 

Although we have just interpreted the product of complex num- 
bers geometrically as the rotation of vectors in a plane we might 
just as well have thought of it as a transformation of points in 
the plane. In our example above, multiplication by i = (0,1) ro- 
tates the initial point (1,1) into its image point (—1,1), where 
the rotation is through the angle 7r/2 and has the origin as its 
center. It was this connection between the algebra of complex 
numbers, or "double algebra" as it was then called, and rota- 
tions in the plane that intrigued Hamilton for years. 

His problem was to discover an analogous relationship in 
three dimensional space, using triplets of real numbers. This 
he was unable to accomplish, for what later turned out to be 
very good reasons. The story goes that one morning, while 
walking with his wife along the Royal Canal, he had a flash of 
inspiration. Of an instant he saw that triples were not enough, 
but rather that four-tuples were required. He saw that he needed 
not just the complex number component i, but rather three such 
components i, j, and k, satisfying the relationship: 

i2=j2 = k2 = ijk=_1 

So struck was he by this discovery that supposedly he stopped 
and carved this equation into the stone of a nearby bridge. And 
so it was that the quaternion was born. 

There are good reasons, buried somewhat deeply in the the- 
ory of abstract algebra, for Hamilton having such difficulty in 
coming up with this new idea. Some years later the mathemati- 
cian Probenius proved that what Hamilton was trying to do 
using triplets was not possible. It was actually the mathematics 
of the situation which finally forced him to turn to quaternions, 
sometimes called complex numbers of rank 4- We shall see later 
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that these are particularly well suited for use as rotation opera- 
tors in three dimensional space. 

The set of all quaternions, along with the two operations of 
addition and multiplication (which we shall define shortly), form 
a mathematical system called a ring, more particularly a non- 
commutative division ring. This longer title merely emphasizes 
the fact that the product of quaternions is not commutative, and 
that multiplicative inverses do exist for every non-zero element 
in the set. 

In summary, the set of quaternions under the operations of 
addition and multiplication satisfies all of the field properties 
which we discussed earlier, except for the commutative law for 
multiplication. 
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Chapter 2 

Algebraic Preliminaries 

2.1    Introduction 
In Chapter 1 we have already introduced the set of complex 
numbers as an example of a set of numbers for which the field 
properties hold. Early on (in the 16th and 17th centuries) there 
was considerable suspicion, mystique and even ridicule directed 
at those who believed in the existence of these so-called "imag- 
inary" numbers. The curious term imaginary number actually 
dates back to those times. And although today we know there 
is nothing 'imaginary' about these numbers — they do indeed 
exist — the name stuck. 

It was not until early in the 19th century, however, that 
mathematicians (particularly Gauss) had formally devised the 
complex number system in order to solve at least quadratic equa- 
tions. Specifically, equations of the form 

x2 + b2 = 0 

x2 - 2ax + a2 + b2 = 0 

for any non-zero real numbers, a and 6, were no longer declared 
as having no solution! 

15 
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Today, the numbers which satisfy these two equations are 
well known even to most high school students as being 

The imaginary part of a complex 
number, namely, ib may also be 
written as bi. 

Im 

b 
(a.b) 

Jy\        Re 
a 

Complex Plane 

Complex Number 
Polar Form 

a + ib    =    Rexe 

where   R yja2 + 62 

and   0    =    arctan - 
a 

and 

x 

x 

=   ib 

=   a±ib 

respectively, where i2 = -1 or i = s/—\. = (-1)1/2. 

In summary, numbers of the form 

z = a + ib = a + bi 

where a and b are real numbers and i2 = —1, have come to 
be known as complex numbers or sometimes imaginary num- 
bers. The letter z, by common convention, is used to denote 
a complex number, and z = a + ib is read as "the complex 
number a plus i&." In this so-called Cartesian representation for 
a complex number, the real number a is called the real part, 
while the product i& is called the imaginary part. The polar 
representation of this complex number is illustrated here in the 
margin. The notion of uniqueness of the polar representation of 
a complex number is presented in a margin note across the page. 

The real numbers are a subset of the complex numbers ob- 
tained by setting 6 = 0; likewise, the set of all purely imaginary 
numbers is a subset of the complex numbers obtained by setting 
a = 0. In this context, the real numbers are said to be of rank 
1, the complex numbers are of rank 2, and the quaternions are 
said to be hyper-complex numbers of rank 4. 

In Chapter 1 we mentioned that the set of rational numbers, 
the set of real numbers, and the set of complex numbers are 
all examples of a field, and we listed there the field properties 
that these numbers satisfy. The set of real numbers, that is, 
those numbers which may be written in decimal form and are 
the subject of study in elementary school arithmetic, is perhaps 
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the most common and familiar to all of us — mathematicians 
and non-mathematicians alike. While we may not realize it, all 
of those operations which may legitimately be performed in our 
day-to-day housekeeping computations are in fact based on the 
field properties for those numbers. 

We now show, in some detail, that the less-familiar set of 
complex numbers also satisfies these same field properties. In 
doing so we shall use, in general, the a + ib notation rather than 
the ordered pair (a,b) notation for a complex number. Our 
purpose in doing so is first, to gain some appreciation for the 
algebraic structure which these numbers exhibit and second, to 
provide important background for developing the properties and 
the algebra of quaternions. 

2.2    Complex Number Operations 

We now verify that the complex numbers, under addition and 
multiplication, satisfy all of the field properties. We begin by 
noting that (by definition) two complex numbers are equal if and 
only if both real parts and imaginary parts are the same. That 
is to say 

a + ib = c + id 

if and only if 
a — c   and   b = d 

Note that here we have used the Cartesian representation for 
complex numbers. For equality of complex numbers in the Po- 
lar form, somewhat more restrictive conditions are required, as 
noted in the margin. 

Polar Form Equality 

For    ri,r2 > 0 

and    a, ß e (-'.«•] 
Then   nela = r2e

i0 

iff   n = T2 

and   a = ß 

Proof: 
rieloe-b = r2e

ifle-ia 

riei(«-«) = r2^
ß-a) 

.. Jo = TV«3-") 

n = r2e^-^ 

=>•   ß-a = 0 

or    a = ß 
and    ri ss r2 

QED 
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2.2.1    Addition and Multiplication 

For every a,b,c,d e R (the set of real numbers), we defined in 
Equation 1.2 addition for complex numbers by 

(a + ib) + (c + id)   =   {a + c) + i(b + d) 

Multiplication was defined in Equation 1.6 as 

(a + ib) x (c + id)   =   (ac - bd) + i(bc + ad) 

We mention here that in the context of complex numbers, vec- 
tor spaces, or even quaternions, a real number is often called a 
scalar. If in the above definition of the product of two complex 
numbers we set b = 0 , then we get a product of the scalar a 
and the complex number c + id as 

a(c + id) = ac + iad 

Since a, 6, c, and d are all real numbers, and since the set of 
real numbers has the field properties, it follows that a + c, b + d, 
ac — bd, and be + ad are also real numbers. It then follows from 
our definitions for addition and multiplication that the sum and 
product of two complex numbers are also complex numbers; that 
is, we have the closure property for addition and multiplication 
of complex numbers. 

In almost the same way it is clear that addition and mul- 
tiplication for complex numbers are both associative and com- 
mutative. By way of example, the details for commutativity of 
addition go this way. We have 

(a + ift) + (c + id) = (a + c) + i(b + d) 

while 
(c + id) + (a + ib) = (c + a) + i(d + b) 
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Because addition for real numbers is commutative we know that 

a + c = c + a 

and that 
b+d=d+b 

It follows that 

(c + a) + i(d + b) = (c + id) + (a + ib) 

and so addition for complex numbers is commutative. 

The identity for addition clearly is 

0 = 0 + iO 

because for any complex number a + ib we have, according to 
the rule for addition 

(a + i6) + (0 + iO)   =   (a + 0) + i(6 + 0) 

=   a + ib 

as required. 

Similarly, the identity for multiplication is 1 = 1+iO, because 
for any complex number a + ib we have 

(a + i6)(l + i0)   =   (o-l-6-0 + i(o-0 + 6-1) 

=   (a-0)+i(0 + 6) 

=   a + ib 

as should be the case. 

The additive inverse for the complex number a + ib is clearly 
—a + i(—6), since 

(a + i6) + (-a + i(-6))   =   (a +(-a))+ i(6+(-6)) 

=   0 + i0 

=   0 

Ordered Pairs 
Commute 

Under Addition 

In this somewhat more rigorous 
proof we define 

(a, 6)    =    complex number 
Let   z\    =    (a, 6) «-> a + ib 

and    22    =    (c,d) «-» c + id 

then we may write 
zi + z2    =    (a, b) + (c, d) 

=    (a + c,b + d) 

and because reals commute 
=    (c + a, d + b) 
=    (c,d) + (a,6) 

=      Z2+ Zl 

QED 
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In Equation 1.9 we have already shown that every non-zero com- 
plex number has a multiplicative inverse. More specifically, us- 
ing Equation 1.7 we may show that the product of the complex 
number a + ib and the number 

G2 + b2       a2 + b2 

is equal to 1, as required. 

Finally, it is easy to show that multiplication is distributive 
over addition, that is: 

£1(22 + 23)   =   Z1Z2 + Z1Z3 

For, if we let  Z\   =   ax + ibi 

and    z2   =   a2 + ib2 

and    z3   =   a3 + ib3 

then 

zi(z2 + z3)   =   (ai+i&i)[(a2 + i&2) + (a3 + i63)] 

=   a,\ [{0.2 + ib2) + (a3 + i&3)] 
+i6x[(a2 + i&2) + (a3 + i63)] 

=   ai(a2 + ib2) + ibi(a2 + ib2) 

+ai(a3 + i&3) -I- i&i(a3 + ife3) 

=   (ai -I- i6!)(a2 + i62) 

+(ai + i6i)(a3 + ift3) 

=    Z\Z2 + Z\Z3 

With this last step we have verified that, with our definition of 
addition and multiplication, all of the field properties hold for 
the set of complex numbers. However, as is the case for any set 
of numbers which satisfy the field properties, we can also define 
the operations of substraction and division. We do this in the 
next section. 
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2.2.2    Subtraction and Division 

In a field, subtraction is usually defined in terms of addition of 
the additive inverse. This means that if we have numbers Z\ and 
22 we define the difference in this way: 

2l-22     =    Z\ + (~22) (2.1) 

where -22 is the additive inverse of 22. For complex numbers 
this works out this way: 

(a + ib) - (c + id)   =   (a + ib) + (-c + i(-d)) 
=   (a + (_c)) + i(6 + (-d)) 

=   (a-c) + i(6-d) 

Thus subtraction for complex numbers proceeds much as does 
addition. For example, 

(5 + 6i) - (3 - 2i)   =   (5 - 3) + (6 - (-2))i 

=   2 + 8i 

Division in a field is usually defined in terms of multiplication by 
the multiplicative inverse. This means that if we have numbers 
21 and 22 we define the quotient of these numbers in this way: 

zi -1 —    =    2i22 
22 

where z^x is the multiplicative inverse of 22. For complex num- 
bers, if we use the multiplicative inverse as given in Equation 1.9, 
division works out this way: 

a + ib ,    . .IW   . . ,w 

c + id 
=   {a + ib)(c + \dy 

_   ac + bd     .be- ad .     . 
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A numerical example will be useful here. Suppose 

zi   =   2 + 3i 

and     z2   =   1 + 2i 

Then we have 
2 + 3i 

l + 2i 
-l =   (2 + 3i)(l + 2i) 

= P + ^Fb"1^ 
=   (2+ *)(!-if) 

8    .1 

"   5-5 

Up to this point we have denned the four ordinary operations 
for complex numbers and have confirmed that over the complex 
numbers we have a field. In the next section we introduce the 
idea of the conjugate of a complex number. 

2.3    The Complex Conjugate 

Associated with each complex number 

z   =   a + ib (2.3) 

is a number called its complex conjugate which is designated 

z   =   a-\b (2.4) 

Using Equations (2.3) and (2.4) it is easy to show by direct 
substitution that the following properties hold: 

z +1   =   2a 

zz   =   a2 + b2 

Zi+Z2    =    Zi+ z2 

Z\Z2   —   ~z{ z% 
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That is, 
z + z   = (a + ib) + (a- ib) 

= (a + a) + i(b + (-b)) 

= 2a 

and, 
zz   =   (a + ib)(a-ib) 

=   (aa - b(-b)) + i(a{-b) + ba) 

=   a2 + b2 

The other two properties mentioned follow in similar fashion. 

Earlier, we called the number y/a2 + b2 the absolute value or 
magnitude of the complex number z = a + ib and denoted it by 

1*1 = VbJ+v 
Now from the above results we have 

zz   =   a2 + b2 

= \A2 

or |*|   =   yfzl. 

a very convenient formula for computing the absolute value of 
any complex number z. Prom this an important identity for the 
absolute value of a product of complex numbers follows. 

Thm:    For any two complex numbers, z\ and z-z 

\Z\QL\   =   NM 
Pf: 

\ziZ2\2   =   (z1z2)(z1z2) 

=     ZiZ2ZiZ2 

=   z1z1z2z2 

= N2N2 

From which it follows that 
\zlZ2\   =   \Zl\\z2\        QED 
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It is also convenient to use the conjugate of a complex number 
in calculating the inverse of a complex number, and in the di- 
vision of complex numbers. Earlier we showed that every non- 
zero complex number does have an inverse, and we showed how 
division may be accomplished in terms of this inverse. Suppose 
once again that we wish to compute the quotient 

= Ü 

If we multiply both sides of this equation by z2, finding this 
quotient amounts to finding a complex number z such that 

ZZ2 = Z\ 

And now if we multiply both sides of this equation by the com- 
plex conjugate zi we get 

ZZ2Z2 = ZiZ~2 

that is, 
z(\z2\)2 = z{zi 

Hence the quotient we want is given by 

~Z~2 

If we compare this result with accomplishing division by z2 by 
multiplying by {z2)~

l we notice that we have found the following 
formula for the inverse of a non-zero complex number: 

Z~X = (HF (2'5) 

To this point we have reviewed only a few of the basic prop- 
erties of complex numbers. We remark, however, that it was 
this successful extension of the real number system which led 
mathematicians to ask 
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Can one construct a mathematical system which uses 
'higher' complex numbers represented, say, by triplets, 
4-tuples, etc., of real numbers in the same way we 
now commonly represent a complex number as an 
ordered 'pair' of real numbers, (a, &)? 

We now know, of course, that the answer is Yes! — at least for 
those 4-tuples we call quaternions. It is generally acknowledged 
that the primary application of the quaternion is as a rotation 
operator on objects in R3. So before we discuss the properties 
and attributes of the quaternion and its related rotation opera- 
tors we must first finish the algebraic preliminaries that relate 
to coordinatization of R? and rotations in the plane. 

It is now known that a mathemat- 
ical system (with division) over 
a set of n-tuples of real numbers 
does not exist for n = 3 or n > 4. 

2.4    Coordinates 

Consider an object (or set of points) in a plane. The relative 
location of each point is defined with respect to a coordinate 
frame fixed in the plane. 

What this means is that in the plane an arbitrary but fixed 
point which we call the origin is specified. Two straight lines 
are drawn which intersect (perpendicularly, for our purposes) 
at this origin: one axis we call the x-axis (usually horizontal) 
the other the y-axis (usually vertical). These axes are actually 
real number lines, whose positive numbers lie to the right of and 
above the origin, respectively, for the usual orientation. 

Note, these two axes are ordered in the plane such that a 
90 degree counter-clockwise rotation about the origin takes the 
positive x-axis into the positive y-axis. 

The origin represents the zero point on each coordinate axis 
and is designated by the ordered pair of real numbers (0,0). 
On both the positive x-axis and the positive y-axis points are 
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chosen which axe a unit distance from the origin, labelled (1,0) 

y-axis 

y\ 
P(*i,yi) 

+i 

Ty 

x-axis 

Origin +1        * ki 

Figure 2.1: The Coordinatized Plane 

For rotations in the plane it is 
helpful to imagine a z-axis which 
is directed out of the plane toward 
the viewer and perpendicular to 
the x-axis and y-axis at the origin. 
Then, using the 'right-hand' rule, 
with the thumb in the direction of 
the positive z-axis the fingers wrap 
in the direction for a positive rota- 
tion about this z-axis. A positive 
rotation rotates the positive x-axis 
toward the positive y-axis. 

and (0,1), respectively. Every distinct point, P, in the plane can 
now be uniquely specified by an ordered pair of real numbers, 
(xi,yi) as shown in Figure 2.1. This gives us a coordinatized 
plane, denoted R2. 

The ideas underlying this coordinatization of the plane can 
be extended, of course, to the coordinatization of 3-dimensional 
space, denoted R3. This requires a third axis which, in context, 
we call the z-axis; this third coordinate axis is assumed to be 
perpendicular to the xy plane and directed positively out of the 
paper toward the reader. See the comment in the margin. 

Our ultimate objective is to understand the use of quater- 
nions for rotations in R3. In order to do this we will need a 
coordinatization of R3. But before we define coordinates in R3 

we first state what we mean by rotations in the plane. 
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2.5    Rotations in the Plane 

We shall distinguish between two perspectives on rotations in 
the plane, and shall determine the effect which each has on co- 
ordinates of points in the plane. The first is rotation of the 
coordinate frame with respect to fixed points (vectors) in the 
plane; the second is rotation of points (vectors) with respect to 
a fixed coordinate frame. 

2.5.1    Frame Rotation - Points Fixed 

In considering rotations in the plane we first determine what 
effect a rotation of a coordinate frame has on the coordinates of 

T 
i P 

?1 \ \ \ 
i 
\ 

o\ 

r/ 

/    \a 

\ 
\ 
\ 
\ 

R  "2 91, 
^ 

\ 
h 

Figure 2.2: Rotation of Coordinates 

a point P fixed in the plane. In Figure 2.2 the fixed point P has 
coordinates (2:1,2/1) in the coordinate frame X,Y. We obtain 
a new coordinate frame x, y by rotating the X, Y frame about 
the origin, through a positive angle 0, as shown. We let the 
coordinates in the new frame be (2:2,2/2) and now determine a 
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relationship between the new coordinates, (£2,2/2)) an<^ the orig- 
inal coordinates, (xi,yi). 

First we identify the point P with a vector r directed from 
the origin to the point P. Let r be the length of the vector r 
and a the angle between the vector and the positive X axis. 
Then, using ordinary right triangle trigonometry, we see that in 
triangle OPR we have 

Figure 2.2 
Rotated Frame 

The (12,1(2) coordinate axes ro- 
tated thru an angle 0 with respect 
to the (xi.yi) coordinate axes. 

and 

xx 

yi 

rcosa 

rsina 

Next, from Figure 2.2 we notice that the angle between the 
vector r and the rotated x-axis is a — 9. In triangle OPQ we 
note 

and 
x2   =   r cos(a — 9) 

?/2   =   r s'm(a — 9) 

Expanding these expressions gives 

x2   = r cos(a — 9) 

= T cos a cos 9 + r sin a sin 6 

and y2   = r sin (a — 9) 

= r sin a cos 9 — r cos a sin 9 

Thus the desired relationship is 

x2   — XiCOs9 + y1sin9 (2.6) 

and y2   = V\ cos 9 - xi sin 9 (2.7) 

2.5.2    Point Rotation - Frame Fixed 

In the preceeding derivation we thought of the point P (or vector 
r) as being fixed while the coordinate frame rotates about the 
origin through an angle 9. However, we may also think of the 
coordinate frame as being fixed while the point P or vector r 
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rotates about the origin through an angle 6 from ri to r2, as 
shown in Figure 2.3. Since the length of a vector is invariant 
under rotations, |ri| = |r2| = r. In this case, for triangle OPiQ, 

v* 
■"■■   -P2 

?2 

,Pi h 

1/      \ :R Q   ':   , 
0 x2        X i 

Figure 2.3: Rotation of Vector 

we have 

and 

X\   =   r cos a 

yi   =   r sin a 

while in triangle OP2R we have 

£2   = T cos(a + Ö) 

= r cos a cos 6 — r sin a sin 0 

= xicosö — yisinö                      (2.8) 

and          V2   = r sin(a + 0) 

= r sin a cos 6 + r cos a sin 0 

= yi cos 8 + X\ sin 0                      (2.9) 

The reader should notice how Equations 2.8 and 2.9 differ from 
Equations 2.6 and 2.7, in that the sine terms in these pairs of 
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equations differ in sign.   The following example will illustrate 
and emphasize the significance of this difference. 

Consider the point P with coordinates (1,1), as in Figure 2.4 
If we rotate the coordinate frame positively (that is, counter- 
clockwise) through an angle 9 = 7r/4, the resulting coordinates 

Figure 2.4: Frame Rotation 

of the point P in the new frame, using Equation 2.6 and 2.7, are 

x2   =   1 cos(7r/4) + 1 sin(7r/4) 

2        2 v 

and y2   =   1 cos(7r/4) — 1 sin(7r/4) 

\/2_\/2 
2        2 

Thus, in the rotated coordinate frame x, y the point P lies on 
the x-axis with coordinates (\/2,0). If, however, we rotate the 
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point P through an angle 6 = 7r/4, the resulting coordinates of 
P, using Equations 2.8 and 2.9, are (0, \/2). The rotated point 
P now lies on the Y-axis! The perspective in the first case is 
that of an observer standing on the fixed point; in the second 
case the observer is seated in the fixed coordinate frame. 

2.5.3    Equivalent Rotations 

We have just discussed two rotations in the plane, one in which 
the points are fixed and the other in which the coordinate frame 
is fixed. In general these rotations produce quite different re- 
sults. A moments reflection, however, will convince one that 
a rotation of a coordinate frame through an angle 8 results in 
exactly the same vector-frame relationship as a rotation of the 
vector through an angle —0. If 9 is positive in Equations 2.8 
and 2.9 the rotation is counter-clockwise, while the opposite is 
true when 9 is negative. We illustrate the point by returning to 
our preceding example. 

Figure 2.5: Rotation Perspectives 

If the coordinate frame is rotated through a positive angle 
0 = 7r/4, the fixed vector (1,1) is transformed into the vector 
(\/2,0) which lies along the new x-axis. If, however, the vector 
(1,1) is rotated clockwise through the angle — 7r/4, relative to the 
fixed coordinate frame X,Y, the resulting vector is again (\/2,0) 
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along the X-axis. This situation is illustrated more generally in 
Figure 2.5. It is easy to show that this is always so. Earlier we 
showed that if we rotate the coordinate frame through an angle 
0, the new coordinates are given by 

x2   =   X\ cos 0 +1/1 sin 0 

2/2   —   2/i cos 0 — X\ sin 0 

(2.10) 

(2.11) 

Suppose now the coordinate frame is fixed and we rotate the 
point (or vector) through an angle, — 0. According to Equa- 
tions 2.8 and 2.9 the new coordinates are given by 

x2   =   X\ cos(—0) — yi sin(—0) 

2/2   =   2/i cos(-0) + Xi sin(-0) 

Since cos(—0) = cosö and sin(—0) = — sin0 these become 

x2   =   Xi cos 0 + yi sin 0 

2/2   =   2/i cos 0 — X\ sin 0 

which correspond exactly to Equations 2.10 and 2.11. Hence, 
these two rotations result in exactly the same vector-frame re- 
lationship. 

2.5.4    Matrix Notation 

Each of the two rotations discussed above is represented by a 
pair of equations. We remark here that each of these pairs may 
be written more concisely by using matrix notation. Those read- 
ers familiar with the product of matrices will recognize that 
Equations 2.6 and 2.7 may be written in the matrix form 

*2 cos 0     sin 0 
- sin 0   cos 0 

Xi 

2/i 
(2.12) 

If we define vectors ri and r2 by 

ri = col[xi,yi]     and     r2 = coJ[rc2,2/2] 
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and a matrix A by 

A   = 
cos 6    sin 6 

— sin 6   cos 6 
(2.13) 

then the above matrix equation takes the simple form 

r2   =   AvY (2.14) 

If the vector r has coordinates (xi, j/i) with respect to an initial 
coordinate frame, this equation gives the pair (22,2/2) as the co- 
ordinates of r with respect to a new coordinate frame obtained 
from the initial frame by a rotation through an angle 6. In this 
context the matrix A is called the rotation matrix or sometimes 
the rotation operator. Such matrices will play an important role 
in our analysis of rotations, and we shall soon be making ex- 
tensive use of both matrix notation and the algebra of matrices. 
Thus we turn next to an elementary review of that notation and 
of the algebra of matrices. 

2.6    Review of Matrix Algebra 

By an m x n matrix we shall mean any rectangular array of el- 
ements arranged in m rows and n columns, for suitable positive 
integers m and n. Such a matrix is said to have order m x n. 
These elements may be scalars or functions or whatever is mean- 
ingful in the context of its use. 

If m = 1 we have a row matrix. If n — 1 we have a column 
matrix. If m — n we have a square matrix. We define matrices 
to be equal if they are of the same order and their corresponding 
elements are exactly the same. 

In general, we shall represent a matrix A as 

A=[a{i,j)] 
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In this notation "i" indicates the row, and ujn indicates the 
column in which the matrix element [a(i, j) is found. Therefore, 
in summary, when we say the matrix i4isanmxn matrix — 
sometimes written A(m, n) — we mean the matrix A has m rows 
and n columns, where m > 1 and n > 1. For appropriate values 
for m and n the matrix may be a row matrix, a column matrix, 
or a square matrix. 

It will be the case that for any ro- 
tation matrix, its transpose is the 
matrix which results if the signs 
of all the angles are changed. Al- 
ternatively, 'flipping' any rotation 
matrix about its principal diago- 
nal produces its transpose. 

2.6.1    The Transpose 

For any matrix A = [a(i,j)], the transpose is defined 

^ = [«(<, i)]' = [o0',0] 

Notice that finding the transpose of a matrix amounts to in- 
terchanging its rows and columns. Thus, for the matrix A in 
Equation 2.13 the transpose is 

A% = 
cos 0   — sin 0 
sin 0     cos 0 

For the reader acquainted with matrix multiplication it is 
easy to see that the matrix associated with the rotation de- 
scribed by Equations 2.8 and 2.9 (in which the coordinate frame 
is fixed while the vector is rotated through an angle 6) is given 
by 

B   = 
cos 6   — sin 6 
sin 9    cos 0 

(2.15) 

We note that this matrix is exactly the transpose of the matrix 
which represents the rotation described by Equations 2.6 and 
2.7, in which the vector is fixed and the coordinate frame rotates 
through the angle 0; that is, we have B = A* . It turns out that 
this will always be the case. 
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2.6.2    Addition and Subtraction 

If two matrices, A and B, have the same order, that is, the same 
number of rows and columns, then their sum A + B is com- 
puted simply by adding corresponding elements. In our matrix 
notation we write 

A + B = [a{i,j) + b(i,j)] 

An elementary example clearly illustrates the definition. If 

A = 
' 1     2 

4   -1 
and B = 

3   1 
2   3 

then          A + B = 
4   3' 
6   2 

A matrix all of whose elements are 0 is called a zero matrix. 
Note that for any matrix A and a zero matrix, denoted O, of 
the same order we have 

A + 0 = A 

Further, the negative of a matrix A is defined by 

-A=[-a{i,j)} 

that is, —A is a matrix whose elements are the negatives of the 
elements of the matrix A. Notice that for any matrix A we have 

A + (-A) = 0 

Subtraction for matrices of the same order is usually defined as 
addition of the negative, that is 

A-B = A+(-B) 
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2.6.3    Multiplication by a Scalar 

If A is a scalar and A is a matrix, the product of the scalar and 
the matrix is given by 

\A = [\a(iJ)} 

that is, we simply multiply each element of A by the scalar A. 
For example, if 

then 

A = 

2A 

' 1 3" 
1 4 

" 2 6" 
2 8 

Notice that we may now, for example, write A + A = 2A and 
-A = (-l)A 

2.6.4    Product of Matrices 

The product of two matrices is a bit more complicated to define. 
We begin by reviewing the dot product of two vectors. If we have 
two vectors in R2, say, 

a = (ai,a2) 

and     b = (61,62) 

the dot product is     a • b = ai&i + a2&2 

Thus if 

a = (1,3) 

and                            b = (-4,2) 

we have                   ab = (1,3)-(-4,2)  =  l(-4) + 3(2) 

= -4 + 6 = 2 

Note that the result is a scalar. 
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If we have vectors in R? the definition is analogous.   For 
example, if 

a   =   (1,3,2) 

b   =   (2,-1,7) 

we have ab   =   1(2)+ 3(-l)+ 2(7) = 13 

The definition extends to vectors considered as n-tuples in Rn, 
for if 

a = (ai,a2, ■■■an) 

and 
b = (61,62, ■■■K) 

then a • b = a\b\ + a2&2 H H anbn 

Using ordinary summation notation, we may nicely write this 
dot product as 

n 

a • b = Yl akh 
fc=i 

Now consider an m x p matrix A(m,p) and a p x n matrix 
B(p, n). Note that the number of columns, p, in A is the same 
as the number of rows in the matrix B. This must be the case 
if we are to be able to compute the matrix product AB. The 
result will be an m x n matrix C. 

The product is defined by this rule: 

The element in the ith row and the jth column of the 
product AB is the dot product of the ith row vector of 
the matrix A and the jth column vector of the matrix B. 

Thus if the ith row of A is (au, ai2, ■ • • ain) and the jth column 
of B is (bij, b2j,--- bnj) then the element common to the ith row 
and the jth column of C = AB is 

Here we finally define the product 
of two matrices 

c(hJ)    —    Y^ikhj 
fc=l 
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Notice that here we have used double subscript notation for the 
elements of a matrix. We give one numerical example. Suppose 

1     3 
-2   7 

and B 
0   2 
4   3 

The element in the Is' row and Is' column of the product, AB, 
is the dot product of the Is' row of the matrix A and the 1st 

column of the matrix B, that is, 

(1,3)-(0,4) =  1-0 + 3-4 =  12 

Proceeding in exactly the same way with the remaining elements 
in the product, we obtain 

AB 

However, we also compute the matrix product commuted, that 
is 

1     3 0   2' 12   11 " 
-2   7 4   3 28   17 

0   2" 1     3 ' " -4   14 ' 
4   3 -2   7 -2   33 

BA   = 

and note that the results are not the same. From this we may 
conclude that 

Notwithstanding what has just 
been said about commutivity un- 
der multiplication, for any 2x2 
rotation matrix A we can always 
write 

A1 A = AA* = 1 

Matrices do not commute under multiplication — 
and therefore the mathematical system which con- 
sists of the set of all 2 x 2 matrices is not a field. 

Any square matrix with all l's on the diagonal and zeroes else- 
where is an Identity matrix, usually denoted, I. It is called an 
Identity matrix because 

AI = IA = A 
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2.6.5    Rotation Matrices 

We return now to the rotation in the plane in which the coor- 
dinate frame rotates while the points (or vectors) remain fixed. 
The transformed coordinates were given by 

x2   =   Zi cos 0 + 2/1 sin 0 

2/2   =   2/i cos 9 — X\ sin 6 

If we write these equations in the slightly altered form 

x2   =   (cos 9)xi + (sin 9)yi 

y2   =   (- sin 9)x\ + (cos 9)yv 

we may recognize that both equations are contained in the single 
matrix equation 

X2 

2/2 

cos 9    sin 9 
— sin 9   cos 9 2/1 

If in terms of vectors we write ri = col[xi, y{\ and r2 = col[z2,2/2] 
and define the matrix A by 

cos 9     sin 9 
— sin 9   cos 9 

then the above matrix equation has the simple form 

r2 = ATX 

In this equation, A is called the rotation matrix or equivalently 
a rotation operator which takes ri into r2. 

In this same fashion we may verify that for the second type of 
rotation in the plane, in which the coordinate frame is fixed and 
the point (or vector) rotates, the appropriate rotation matrix is 

B   = 
cos 9 
sin0 

— sinö 
COS0 

(2.16) 
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Rotation Matrix Inverse 
The inverse of a rotation matrix A 
is its transpose, A*, that is 

A1 A =  AA*  = I 

where / is an Identity matrix 

Note that this matrix B is the transpose of the matrix A, that 
is 

B = Al 

Consider once again the rotation matrix A associated with 
the rotation of the coordinate frame through an angle 9 while 
the point (or vector) remains fixed. We will have occasion to 
consider how such a rotation can be "undone", that is, how the 
effect of the rotation can be negated. If we think about it for a 
moment, it seems clear that there are two ways to do this. First, 
we may simply rotate the coordinate frame through an angle -9. 
Surely this will return things to their original position. Second, 
perhaps not quite so clearly, we may rotate the point (or vector) 
through an angle 6 while the coordinate frame remains fixed. 
Now an interesting thing happens. The matrix which represents 
the first of these possibilities may be obtained by replacing 6 by 
-6 in the matrix A. We get 

B = 
cos{-9)     sin(-0) 
-sin(-0)   cos(-0) 

Since we know, cos(-0)   =   cos# and sin(-ö)   = 
matrix B may be written 

B = 
cos 9 
sinö 

— sin# 
COS0 

(2.17) 

sinö, the 

(2.18) 

But this is exactly the matrix B of Equation 2.16, namely, 
the transpose A1. Prom this we learn that the rotation matrix 
needed to "undo", that is, to invert the rotation represented by 
the matrix A is exactly the matrix A1. Or we may say that the 
inverse of a rotation matrix is its transpose. The inverse of a 
matrix A in general we consider in following sections. 

We indicated that there was a second way to invert the rota- 
tion we are considering, and that was to follow it by a rotation 
of the point (or vector) through an angle 9 while the coordinate 
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frame remains fixed. As we noted above, the matrix associated 
with this rotation is exactly the matrix B of Equation 2.14, 
which in fact is A1. Thus we obtain exactly the same result as 
before, so the two possibilities are in fact equivalent. 

We note finally that these results hold whether the angle 6 
is positive or negative, that is, the result does not depend on 
the direction of the rotation. We turn now to the procedure for 
finding the inverse of a matrix in general. 

2.7    The Determinant 

In our discussion so far we have considered the sum, difference, 
transpose, and product of two matrices. We must yet consider 
the quotient of two matrices, that is, how division by a matrix 
is accomplished. As with complex numbers, we shall define di- 
vision by a matrix in terms of multiplication by the inverse of 
the matrix. 

By the inverse of a square matrix A we mean a matrix B, 
of the same order as A, such that AB = BA = /, where / is 
an identity matrix. As an example of the use of the inverse of 
a matrix, consider the following system of two equations in two 
unknowns 

x + 3y   =   7 

2x + 7y   =   16 

Almost by inspection we see the solution to the system to be 
x = 1 and y = 2. However, if we use the product of matrices we 
may write this system in the matrix form 

AX = B 
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The determinant of every rota- 
tion matrix is equal to one. As 
an example, note that for Equa- 
tion 2.16 the det(B) is equal to 1. 

where 

A = 
1 3 
2 7 

B = 
7 
16 

X = 
x 

y 

If we have the inverse of A available, say A x, we may multiply 
the equation AX = B on the left by this inverse to obtain 

that is 

A~lAX = A~lB 

X = A~lB 

which gives us the solution to the system.  It turns out in our 
case that the solution is 

X  = 
7    -3 

-2     1 
7 
16 

We consider now ways in which the inverse of a matrix may be 
found, beginning with the idea of the determinant of a matrix. 

Associated with every square matrix, A, is a scalar called its 
determinant, denoted det(v4) or \A\. 

The determinant of a 1 x 1 matrix, say B = [6], is equal to 
the single element b. 

The determinant of the 2x2 matrix 

A = 
a   b 
c   d 

is the scalar defined by 

det(,4) = \A\ = ad-be 

In order to compute the value of the determinant for annxn 
matrix where n > 2 we first introduce and define, by example, 
some preliminary matters relating to n x n matrices. 
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2.7.1    Minors 

Consider the square matrix 

an «12 Ol3 1 0 

«21 «22 «23 = 2 1 

«31 Ö32 «33 0 1 
(2.19) 

Associated with each element o^ of the matrix A is a minor 
denoted Aij. Minor A{i is a number which is equal to the value 
of the determinant of the submatrix obtained by deleting row i 
and column j of the matrix A. For example, in the matrix of 
Equation 2.19, the minor of the element a32 is 

^32   = 
an   ai3 1 1 

«21     «23 2 -1 - -3 

2.7.2    Cofactors 

The cofactor associated with the element a^ is denoted and 
defined by 

A% = {-lj+jA{j 

that is, it is a signed minor. For the above example, then, the 
cofactor is, 

Ac 
^32 =  (-1)3+M32 =  (-l)(-3) = 3 

2.7.3    Determinant of an n x n Matrix 

We now can calculate the determinant of any n x n matrix in 
terms of any selected row (or column) and the associated cofac- 
tors of this selected row (or column). 

For example, let B = n x n matrix.  Then expanding over 
any selected row, say the ith row, we have 

det(B) = X>fcBSk 
fc=i 

The  Minor  and   its  related  Co- 
factor are both determinants and 
therefore they are both numbers. 

Cofactor  =   ± Minor 
Cofactor  =   (-1)1+-'Minor 

The scalar value of a Minor (a de- 
terminant), of course, may be pos- 
itive or negative. In any event, the 
related Cofactor has a sign which 
is opposite that of the Minor, if 
i+j is odd. The Cofactor is equal 
to the Minor if i + j is even. 
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We emphasize, if the Cofactors in 
an expansion still have rank > 4 
then a further expansion may be 
required for these cofactors. 

Or again, if we expand over, say some jth column, we have 

det(B)  =  J2bkjB
c

kj 
fc=i 

Choosing a row (column) with some elements equal to zero obvi- 
ously simplifies the required computations in the indicated sums. 
There are methods for generating the desired zeroes in order to 
simplify the computation of a determinant, but we shall not re- 
view these here. 

Using Equation 2.19 and expanding about the third column 
we can write 

det(A)   = ai3 
a2i «22 

-023 
«31 032 

an   a12 
+ 0-33 

a3i   a32 

an   au 
«21     «22 

or if we expand about the second row 

det(A) = —a2i 
«13 

+ «22 
«33 

an   «13 

«31     «33 

an   ai2 
— a23 

«31     «32 

A    = 
an ai2 Ol3 

»21 022 "23 

Ö31 032 033 

It may be that the Cofactor 
matrices themselves, that is the 
Ac(ij)'a, will also require expan- 
sion. This rapidly results in 
computational congestion. The 
properties of determinants provide 
some useful means for simplifying 
the work involved. 

In either case we get the expected result we were taught in 
secondary school, 

det(A)   =   aiia22a33 + ai2a23a3i + ai3a2ia32 

—«13«22«31 — «11«23032 — Ol2«21«33      (2.20) 

In fact, the determinant can be found by expanding about any 
row or column. 

If we replace these elements by their numerical values in 
Equation 2.19 we get det(A) = 5. 

If det(A) = 0 we say A is singular. Otherwise, A is said to be 
non-singular. It is only a non-singular matrix that is invertible, 
that is, it has an inverse. 
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In summary, the value of the determinant of any nxn square 
matrix, B, can be found by the following procedure: 

1. Choose any row (column). 

2. Compute cofactors for elements in chosen row (column). 

3. det(jö) = E"=i Oij x .5? for chosen column j, or 

4. det(B) = E"=i a-ij x Bfj for chosen row i 

2.8    The Cofactor Matrix 

The cofactor matrix, denoted Ac(i,j) or simply as Ac, for the 
matrix A = [a(i, j)] is 

Ac(i,j) = [A%] 

where each of the elements of Ac
{j are the corresponding cofactors 

of the matrix A. That is, the cofactor matrix Ac is constructed 
from the matrix A by replacing each of its elements by its co- 
factor. 

As an example, consider the 3 x 3 matrix A given by 

1 
A = 

1 0 
2 1 
0   1 

-1 

Earlier we calculated the cofactor of the element a32 = 1 to be 
A%2 — 3, so in the cofactor matrix the element 1 is replaced by 
its cofactor 3. The reader should check that if this is done for 
each of the elements in the matrix A the result is the cofactor 
matrix 

NOTATION SUMMARY 

• Matrix: A = [a(i,j)] 

• Minor: Aij 

• Cofactor: 

• Cofactor Matrix: 

Ac(ij) = [(-D'+'JM 

• Adjoint: Aa = (Ac)f 

AC   = 
3-4    2 
1      2    ^1 

-1    3      1 
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2.9    Adjoint Matrix 

The adjoint matrix, denoted Aa, of the matrix A is simply the 
transpose of the cofactor matrix of A. That is 

Aa = (ACY 

Thus the adjoint of our matrix A above is the matrix 

Aa = 
3      1 
-4    2      3 
2    -1     1 

1 

We next review two ways in which the inverse of any square 
non-singular matrix may be computed. 

2.10    The Inverse Matrix - Method 1 

The first method is based on the ideas we have just presented. 
If det(A) is not zero, that is A is non-singular, we may compute 
the inverse, A'1, simply by dividing the adjoint matrix Aa by 
the determinant of A. That is 

A-1 = 
Aa 

det(A) 

In our example the result is 

det(;4) ^ 0 

A-1 = ; 
3 1 -1 " 
-4 2 3 
2 -1 1 

The reader should now verify that the product A XA is in- 
deed a 3 x 3 identity matrix. 
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2.11    The Inverse Matrix - Method 2 

The second method for finding the inverse of a matrix is quite 
different, and is based on the Cayley-Hamilton Theorem 
which states that 

Every non-singular matrix satisfies its own charac- 
teristic equation. 

Every nxn matrix A has a characteristic equation defined by 

det(i4 - XI)  = p(A)  = 0 

In general, the characteristic equation of an n x n matrix has 
the form 

p(A)  = An + an-iA"-1 + • • • + axX + a0 = 0 

Therefore, invoking this theorem, we have 

p(A) = An + an-XA
n'1 + • • • + ayA + a0I = 0 

Multiplying both sides of this polynomial by A'1 and solving 
for the inverse yields, 

A'1  = -—\An-l+an-lA
n-2 + --- + a2A + alI] 

aQ 

This method for finding the inverse is quite simple for 2 x 2, 
and even 3x3, matrices. 

As an example, we will find the inverse for the 2 x 2 matrix, 

*, 3   4 

M =      1   2 

In Method 2, note, there is no 
need to solve for the characteris- 
tic values or characteristic vectors 
(which can be tedious) — find only 
the characteristic equation. 
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The characteristic equation for the matrix M is defined by 

3-A      4 
1      2-A 

p(\)   =   det 

=   A2-5A + 2 = 0 

= 0 

=   M2-5M + 2/ = 0 

Multiplying this equation by M~l gives 

M-5I + 2M-1  = 0 

From this we can write 

M"1   =   1(5/-Af) 

-1! '5   0' 
0   5 

'3   4' 
1   2 

1 2    -4 ' 
2 -1     3 

]) 

As a second example, we find the inverse for the 3x3 matrix 

A = 
1 0    1 
2 1   -1 
0   1     2 



2.12.  ROTATION OPERATORS REVISITED 49 

1 
-1 

(2-A) 

=   0 

The characteristic equation for the matrix A is a polynomial 
equation found by solving the determinant 

p(A)   =   det(A -XI) = 0 

(1 - A)        0 
2        (1-A) 
0 1 

=   5-6A + 4A2-A3 

and because matrix A satisfies its own characteristic equation 

5/ - 6A + AA2 - A3   =   0 

Multiplying both sides by A"1 and rearranging terms gives 

A'1   =   l(6I-4A + A2) 

The intermediate computational details, that is solving for A2 

and summing multiples of matrices, are straight-forward. This 
result, of course, is the same as that obtained by Method 1. 

3 1 -1 
-4 2 3 
2 -1 1 

2.12    Rotation Operators Revisited 

In Section 2.6.5 we derived rotation operators for rotations in 
R2 of the coordinate frame and of the points (or vectors). In 
the case of a rotation of the coordinate frame through an angle 
6 the rotation operator is 

A   = 
cos 9    sin 9 

— sin 9   cos 6 

while in the case of a rotation of the points (or vectors) through 
an angle 6 the rotation operator is given by 

B   = 
cos 9   — sin 9 
sin 9    cos 9 
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Are there conditions on a matrix 
that will guarantee that it is a ro- 
tation operator? The answer is 
YES! 

We noted that the operator in the one case is exactly the trans- 
pose of the operator in the other. In fact, each is the inverse of 
the other. It should also be mentioned that the matrix repre- 
sentation of a rotation is unique. The only matrices that work 
are those we have found. 

We want to consider two properties which these matrices 
have, as well as to determine conditions under which a given 
2x2 matrix is a rotation operator. The first property we note 
is that each of these operators has determinant +1, as the reader 
may easily verify. It turns out that this is always the case with 
a rotation operator. The second property is that each of these 
rotation matrices is orthogonal. We say a matrix A is orthogonal 
if the product of the matrix and its transpose is an identity 
matrix. That is, annxn matrix A is orthogonal when 

A1 A = AAl = I 

Equivalently, we may say a square matrix A is orthogonal if it is 
invertible and its inverse is exactly its transpose. With the use 
of the familiar trigonometric identity 

cos2 0 +sin2 0 =  1 

All rotation operators are orthog- 
onal and have determinant +1. 

the reader may easily verify that the rotation operators A and 
B above are indeed orthogonal. 

We mention, without proof, that the determinant of the 
product of two matrices is the product of the determinants of 
the individual matrices. In particular if matrices A and B both 
have determinant +1, so does their product AB. Further, if 
both A and B are orthogonal matrices, the product AB is also 
orthogonal. This is fairly easy to show, once we recall that in 
general 

(AB)' = BlAl 
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Then we may write 

(AB) (AB)'   =   ABB'A1 

=   AI A1 

=   AAl 

=   I 

which is what we needed to show. 

Finally we show that if a 2 x 2 matrix is orthogonal and has SwTShogoL matric^tho2 
determinant +1, then it must be a rotation matrix. The details determinant is +i. 
of the argument are somewhat tedious, but it may be well to 
consider them, since we are dealing with concepts important to 
our work. Let the matrix A be given by 

A   = 
an   ai2 
0-2X     &22 

We assume that A is orthogonal and has determinant +1. These 
two conditions yield the following equations 

a?i + a21    =    * 
2     ,     2           1 

CL\\0-\2 + Ö21a22     —    0 

&na22 — a21a12     =     1 
2,2 
hi ■+" a21 
2 i_ 2 

l12   '   a22 

Now if we add the third and fourth of these equations, then 
subtract twice the second equation we obtain 

(au - 2ana22 + a22) + (a\2 + 2ai2a21 + a21) = 0 

that is, we have 

(au - a22)
2 + (a12 + a2i)

2 = 0 

From this equation it follows that 

o-u    =    ^22 

and a i2   =   — a2i 
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Remember that the determinant 
of the matrix is +1 

It will be convenient to choose 9 so 
that 

-ir < Q < a- 

Hence the matrix A must be of the form 

A   = 
a    b 

—b   a 

where 
a' + b2 =  1 

This implies that the point (a,b) lies somewhere on a circle of 
radius 1, so there is an angle 9 such that a = cos 9 and b = sin 9. 
Therefore the matrix must be of the form 

A   = 
cos 9    sin 9 
- sin 9   cos 9 

But this is exactly the rotation matrix for a coordinate frame 
rotation through an angle 9. 

In this analysis, the angle 9 may be replaced by the angle -9, 
which would produce the rotation matrix associated with the ro- 
tation of points (or vectors) through an angle 9. Hence we have 
characterized rotation operators in R2 as exactly those 2x2 ma- 
trices which are orthogonal and have determinant +1. Since the 
product of orthogonal matrices is orthogonal and the determi- 
nant of a product is the product of the determinants, it follows 
that the product of two rotation operators is always another ro- 
tation operator. We shall explore these matters further in the 
next chapter, where we extend these ideas to three-dimensional 
space, designated R3. 



Chapter 3 

Rotations in 3-space 

3.1    Introduction 

In Chapter 2 we considered rotations in two-dimensional space, 
that is, in R2, and how such rotations are represented by ma- 
trices. In particular, we made a careful distinction between a 
rotation of the coordinate frame with respect to fixed points (or 
vectors) as opposed to a rotation of the points (or vectors) with 
respect to a fixed coordinate frame. In fact, if in both cases the 
angle of rotation is +9, then it was noted that the rotation op- 
erator for the one case was simply the transpose of the rotation 
operator for the other case. We noted further that the one is 
the inverse of the other. In this chapter we extend these ideas 
to the three-dimensional case, that is, to R3. 

Our ultimate objective is to show how quaternions may be 
used as rotation operators in R3. In this chapter we consider 
a simple sequence of rotations in R2, that is, in the plane. We 
then develop matrices as rotation operators in Ä3, and consider 
sequences of rotations in R3, all in terms of matrix algebra. We 
apply these results to the aerospace application of tracking a 
remote object. We conclude with a geometric analysis of the 
single axis equivalent of the tracking transformation. 

53 
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3.2    Rotation Sequences in the Plane 

We now consider what happens when one rotation is followed by 
another, that is, what is the result of a sequence of two rotations. 
Suppose a rotation of the initial coordinate frame (points fixed) 
through an angle a is followed by a rotation of the resulting 
coordinate frame through an angle ß. Clearly the result is a 
rotation of the initial coordinate frame (points fixed) through 
an angle a + ß, as illustrated in Figure 3.1. 

Figure 3.1: Rotation Sequence in R? 

The axes of the reference frame are labelled X and Y. Con- 
sider any vector v defined in this reference frame. We define a 
new frame, labelled, Xi and j/i, which is related to the reference 
frame by a rotation through an angle a. The vector v defined 
in this new frame we denote Vi and we write 

vi = RQv 

where the matrix rotation operator is 

Ra = cos a     sin a 
— sin a   cos a 
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Next, we define another new frame, which is rotated through an 
angle ß with respect to the X\,yi frame; the axes of this new 
frame are labelled x^ and 2/2, respectively. We then can write 

v2 = Rß\\ 

where the matrix rotation operator is 

Rn — 
cos ß     sin ß 

— sin ß   cos ß 

Then, using rules of matrix algebra, we may write 

v2   =   RßV\ 

=   R0(Rav) 

=   {RßRa)v 

This equation shows that the rotation operator for the sequence 
of rotations is exactly the product of the two individual rota- 
tion operators Rp and Ra; that is, we may obtain the vector 
v2 directly from the vector v by multiplying v by the product 
RpRa. Using the rules for calculating this product, as well as 
two familiar trigonometric identities, we may write 

RßRa   — 
cos ß    sin ß 

— sin ß   cos ß 
cos a    sin a 

— sin Q   cos a 

where     an 

ai2 

«21 

Thus we have 

RßRa     = 

an   an 

021     ^22 

cos ß cos a — sin ß sin a = cos(a + ß) 

cos ß sin a + sin ß cos a = cos(o; + ß) 

— sin ß cos a — cos ß sin a = — sin(a + ß) 

— sin /? sin a + cos ß cos a = cos(a + ß) 

cos(a: + /3)     sin(a + ß) 
— sin(a + ß)   cos(a + /?) 

For rotations in the plane, the 
product of two such rotations, 

R(a)R(ß) = R(a + ß) 

is another rotation which repre- 
sents the algebraic sum of the an- 
gular rotations. 
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We notice immediately that this final matrix is just the rota- 
tion operator representing a rotation of the coordinate frame 
through an angle a + ß, while the points (or vectors) remain 
fixed. Thus we have shown, algebraically, that a rotation of 
the frame through an angle a, followed by another rotation of 
the frame through an angle ß is equivalent to a single rotation 
through an angle a + ß, as we asserted earlier. 

3.3    Coordinates in R3 

Three-dimensional space, designated R3, may be coordinatized 
in a way which is entirely analogous to the way in which we in- 
troduced coordinates in R? . In R3 an arbitrary but fixed point 
is specified which we call the origin. Three mutually perpen- 
dicular lines passing through this origin are specified, called the 
X-axis, the Y-axis, and the Z-axis, respectively. Each of these 
axes is again a real number line, with the zero-point at the origin. 
These axes are oriented so as to form a positive or right-handed 
coordinate frame. By a right-handed coordinate frame we mean 
— with the fingers of the right hand pointing positively along 
the x-axis, then as the fingers wrap toward the direction of the 
positive y-axis the upright thumb points positively in the di- 
rection of the z-axis. The three mutually perpendicular axes, 
however, may be pointed or oriented in any convenient manner 
with respect to the viewer, consistent with established conven- 

A Right-handed Frame tions. 

Given such a three-dimensional coordinate system, points in 
R? are now represented by triplets (x,y,z) of real numbers. The 
origin, in particular, has coordinates (0,0,0). In R3 we may 
represent any given point, say P = (x, y, z) as a vector v from 
the origin O to the point P, as in Figure 3.2. 
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X P(x,y,z) 

Figure 3.2: Vector in R3 

We begin, as we did in R2, with a rotation of the XYZ 
coordinate frame while the point (or vector) remains fixed. Our 
problem is to determine the coordinates of the point relative 
to the rotated frame. More than that, we wish to determine a 
rotation matrix A , necessarily in this case a 3 x 3 matrix, such 
that if the coordinates relative to the rotated frame are given by 
V2 = (x2,j/2,22) we have, just as in R2 

v2 = A\i 

Although in R2 we simply rotated the coordinate frame about 
the origin through some angle 6, in R3 simple rotation about 
the origin is not well defined. We need also to specify an axis 
about which the rotation is to be made. For example, in R3 we 
may have a rotation of the coordinate frame through an angle 
7r/2 about the Z-axis. Such a rotation clearly is quite different 
from a rotation of the coordinate frame through an angle n/2 
about, say, the X-axis. In the first of these rotations the x and y 
coordinates are changed while the z coordinate does not change. 
In the second the y and z coordinates change while the x coor- 
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dinate does not. 

More specifically, suppose that a point P (or vector v) has 
coordinates (xi, j/i, -Zi) relative to the (XY Z) coordinate frame. 
We rotate the frame about the X-axis through an angle ip. Let 
the coordinates of P relative to the rotated frame be (x2, y2,z2). 
It seems clear that rotation about the Z-axis will not change the 
z-coordinate of the point, and so we must have 

Z2 = 2i 

„ P(x,y,z) 

Vectors in R3 

In order to determine x-i and y2, consider the vector \\ pictured 
in Figure ??. This vector is called the projection of the vector 
v onto the XY plane. Considered simply as a vector in R2, 
V! has coordinates (xi,j/i). Further, the rotation through the 
angle ip about the Z-axis is clearly just a rotation in R2 of the 
XY coordinate frame through an angle ip, a rotation which is 
described by Equations 2.6 and 2.7. Hence we must have 

£2   =   xi cos ip + yi sin ip 

y2   =   —xi sin ip + yi cos ip 

If we combine these results into a single set of equations we get 

X2   =   Xi cos ip + 2/1 sin ij) + 0 • z\ 

j/2   =   —xi sin ip + yi cos tjj + 0 • z\ 

Z2     =    0 • Xi + 0 • J/i + 1 • Z\ 

This set of equations may be written in matrix form as 

x2 " cos^;     sin^   0 " Xi 

V2 = — sin ip   cos ip   0 y\ 
Z2 _ 0           0      1 Zl 

We now recognize immediately that the 3x3 rotation matrix 
associated with the rotation in R3 about the Z-axis through an 
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angle \j) is the matrix R^ given by 

Rip   — 

cost/' 
— sint/> 

0 

sin?/; 0" 
cosip 0 

0 1 
(3.1) 

An example will be helpful at this point. Consider the vec- 
tor v = (1,1,1) in an XYZ coordinate frame. We rotate the 
frame about the Z-axis through an angle ip = 7r/4, to get a new 
xyz coordinate frame. According to the above results, the co- 
ordinates of the vector v relative to this new frame are given 
by 

Z2 ' "   v/2/2    N/2/2   0 " ' 1 " \V2 
V2 = -A/2/2   \/2/2   0 1 = 0 
Z-2 0           0      1 1 1 

The reader should now consider the geometric nature of this 
rotation of the coordinate frame to see that we have in fact ob- 
tained the correct result. 

Before leaving this rotation of the coordinate frame through 
a certain angle about the Z-axis, we note that if we have a 
sequence of two such rotations, the first through an angle a, 
followed by a second through an angle ß, we may (just as in the 
case of rotations of the frame in R?) find the rotation matrix 
for the product of these rotations by multiplying the individual 
rotation matrices; that is, we have 

Ra 

Re — 

cos a sin a 0 
— sin a cos a 0 

0 0 1 

cos ß sin ß 0 
— sin ß cos ß 0 

0 0 1 
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and 

Ra+ß — 

cos(a + ß)     sin(a + ß)   0 
- sin(c* + ß)   cos(a + ß)   0 

0 0 1 

Note, that if the angles in the above example are equal to zero 
then these rotation matrices become identity matrices. In this 
context therefore, it makes sense that for a non-zero rotation 
about the z-axis that the r(3,3) entry should be a T, because 
the direction of the z-axis remains unchanged and the values 
of the z-components of any vectors, whatever their values, also 
remain unchanged. 

Prom the foregoing it follows that if the rotation in R? were 
about, say, the Y-axis then the T should appear in the r(2,2) 
position of the rotation matrix, because only the Z-axis and the 
X-axis components are affected by a rotation about the Y-axis. 
Hence, for a positive coordinate frame rotation through an angle 
0 about the Y-axis the rotation matrix is 

Re   = 
cos 0   0   — sin 0 

0      1        0 
sin 0   0    cos 0 

(3.2) 

Similarly, for a positive coordinate frame rotation through an 
angle, <f>, about the X-axis the rotation matrix is 

R<t> = 

1       0 0 

0    cos <j>    sin <f> 

0   — sin <j>   cos <j) 

(3.3) 

There is an important point here which the reader should not 
ignore, and that is the proper placement of the sine and -sine 
terms in the matrices of Equations 3.1, 3.2, and 3.3. This place- 
ment is dictated by our use of a right-handed coordinate frame. 
A convenient device for determining the proper placement of 
these terms is the sequence 
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X YZX Y 

Then, reading this sequence from left to right, a positive rotation 
about the X-axis through an angle 4> rotates the Y-axis into the 
Z-axis, and so the sin 0 term is associated with the y-coordinate 
while the -sin <f> term is associated with the z-coordinate, as writ- 
ten in the matrix R^ above. Next, again reading the sequence 
from left to right, a rotation about the Y-axis (in a positive 
direction in the right-handed coordinate frame, using the right- 
hand rule) through an angle 6 rotates the Z-axis into the X-axis. 
Hence the sinö term is associated with the z-coordinate while 
the -sinö term is associated with the x-coordinate, as in the 
matrix Re above. Finally, a positive rotation about the Z-axis The reader may wish to devise her 

through an angle V rotates the X-axis into the Y-axis, so the ^"mlZs'sine'term. P'aCement °f 

term sin^ is associated with the x-coordinate while the -sin^ 
term is associated with the y-coordinate, as in the matrix R^ of 
Equation 3.1. It is important to understand how the rotation 
operators for rotations about an axis of the coordinate frame are 
written because we will develop the general rotation operator in 
R3 as a sequence of rotations about a coordinate frames axis. 

The reader should check that each of the rotation operators 
R^,, i?0, and Rj,, which represent rotations of the coordinate 
frame about a coordinate axis, is orthogonal and has determi- 
nant +1. We make use of this fact in the next section. 

So far in this section we have considered only rotations of 
the coordinate frame while the points (or vectors) remain fixed. 
We may also have rotations of the points (or vectors) through 
a certain angle about a coordinate axis, while the coordinate 
frame remains fixed. We do not discuss the details here, but the 
resulting rotation operators turn out to be the transpose of the 
operators we have just considered. This is, of course, entirely 
analogous to the case in R2. 
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We should note here that the the- 
ory of linear algebra tells us that 
the matrix representation for a ro- 
tation in R3 is unique, that is, for 
a given rotation in R3 there is one 
and only one matrix which repre- 
sents that rotation relative to the 
initial coordinate frame. 

3.4    Rotation Sequences in R3 

In the preceding section we showed that any sequence of two suc- 
cessive rotations in R3 about the same coordinate axis, whether 
the frame rotates or whether the points rotate, amounts to a 
single rotation about that axis through an angle which is the 
sum for the angles of the rotations in the sequence. We now 
wish to show that a sequence of two rotations in which the rota- 
tions are not about the same coordinate axes is also a rotation 
through some angle about some axis, usually not a coordinate 
axis. In fact, we shall determine the rotation operator for the 
sequence, that is, the 3x3 matrix which represents the rotation. 
We shall also determine the axis of rotation, as well as the angle 
of rotation about that axis. 

Prom geometric considerations it should be clear that for a 
rotation in R3 about some axis through the origin the axis itself 
is fixed under the rotation, that is, it does not change. Further, a 
plane, passing through the origin, which is perpendicular to this 
axis rotates into itself, that is, a vector in that plane is rotated 
into some other vector in that plane. And, of course, the length 
of vectors, and for that matter, the angle between two vectors is 
not changed by a rotation, which means that the scalar product 
of two vectors remains unchanged by the rotation. We describe 
this fact by saying that the scalar product is invariant under 
the rotation. We wish first to argue that the characterization of 
rotation operators in R2 also holds in R3, that is 

A 3 x 3 matrix is a rotation operator in R3 if and only 
if it is an orthogonal matrix and has determinant +1. 

We need first to show that a rotation matrix must be or- 
thogonal and have determinant +1. Suppose that the rotation 
is through some angle 6 about the vector v as the axis. As we 
have just mentioned, the scalar product of two vectors is invari- 
ant under the rotation, which means that for any two vectors Vi 
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and v2 

(Av1)
t(Av2) = v'v2 

But then we have 

\\A?A\2   =   v'v2 

or vt
1i4'i4v2 - v'v2   =   0 

that is \\{AtA-I)\2   =   0 

Since this last equation holds for any pair of vectors \i and v2 

we can show that 

A1 A-1   =   0 

that is A1 A   =   I 

This shows that the matrix A is orthogonal. 

Next, it is rather easily shown that the determinant of an 
orthogonal matrix is either +1 or -1 . We know that det(Al) = 
detA and that the determinant of a product is the product of 
the determinants, so if A is orthogonal we have 

{det(A))2   = det{Al)det{A) 

= det(AlA) 

= det(I) 

= 1 

Hence det(A) must be either +1 or -1. Now, it should be clear 
that a rotation preserves the right-handedness of a coordinate 
frame; hence we cannot have det(A) = —1. For example, if the 
matrix is 

B   = 

the reader should check that the standard right-handed coor- 
dinate frame is mapped into a left-handed frame.  In fact, the 

1   0 0   1 
0   1 0 
0   0 -1 

The reader should check that the 
matrix B is orthogonal and that 

det(B) = -1 
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transformation represented by the matrix B is a reflection in 
the XY plane, which leaves the X and Y axes unchanged but 
reverses the Z axis. Thus the frame becomes a left-handed 
coordinate frame. Prom all this it follows that we must have 
det(A) = +1. 

So far we have shown that if a matrix A represents a rotation, 
then A is orthogonal with det(A) = +1. Now suppose that we 
have a 3 x 3 matrix A which is orthogonal and has determinant 
+1. We wish to show that it represents a rotation through some 
angle about some fixed axis. Since the axis of any rotation is 
fixed under rotation, our first step is to show that there must 
be a fixed vector, v0 such that 

AvQ = v0 

This is equivalent to saying that the matrix A must have a char- 
acteristic value or eigenvalue of +1. The eigenvalues of the ma- 
trix A are exactly the scalars A which satisfy the characteristic 
equation 

det(A -\I)=0 

Thus there will be an eigenvalue of +1 if and only if the de- 
terminant of the matrix (A - I) is equal to 0.  The following 

Notice that in this computation we Computation shows that this is SO. 
have used the condition that the 
matrix A is orthogonal, and that det(A - I)    =    detAldet{A - I) 

det(A) = det(A') = I = det{AlA - A1) 

= detil-A') 
= det((I-AY) 
= det(I-A) 
= (-l)det(A-I) 

It follows that 

det(A-I)   =   0 
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Thus our transformation does have a fixed vector, say v0, which 
is the axis of the rotation. We next show that the plane, which 
contains the origin (and is perpendicular to this fixed vector v0) 
is fixed in the sense that any vector in that plane is mapped by 
A into another vector in that plane. We first remark that since 
v0 is fixed under A, it is also fixed under A1. For if 

Av0 = v0 

we may write 

AW0   =   AlAv0 

=   7v0 

=   v0 

Now consider a vector v in that plane, that is, perpendicular to 
the fixed vector vo, which means that 

v'v0 = 0 

Then the vector A\ is also perpendicular to v0, for we have 

(Av)'v0   = (vM*)v0 

= v^Avo 

= v'/vo 

= v*v0 

0 

as we wished to show. 

If A is orthogonal we have 
Finally, if the matrix A is orthogonal, then the scalar prod- 

uct is invariant under this transformation, and it follows that (AvrfiAvi)   =   v[AtAv2 

lengths of vectors and the angle between vectors are unchanged =   Vj/V2 

under A as we show in the margin. This means that the trans- 
formation represented by A must be a rotation, as we wanted to 

=      VJV2 
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show. 

The trace of a product of two 

square matrices is invariant under 

commutation. That is, 

Tr{AB)  = Tr(BA) 

Proof: 

Let    C    =    AB  =  [cij] 
n 

c«i    =    2^/ aikbki 

n 

then   cu    =     y   ajkbki 

and Tr(C)    =    Y^di 

=    tr(AB) 
n       n 

= Y^^2aikbki 

but scalar products commute, so 

= HX><a" 
t=l fc=l 

interchanging order of summation 
n       n 

= YU2bkiaik 
*=1  t=l 

=    tr(BA)      QED 

There remains the problem of determining the angle of ro- 
tation. To calculate the angle of rotation we need the concept 
of the trace of a matrix. The trace of a square matrix A, de- 
noted Tr(A), is simply the sum of the elements lying on the 
main diagonal of the matrix. Thus the trace of the matrix 

Rs   == 
1       0 0 
0    cos <f>    sin <j> 
0   — sin <j>   cos <f) 

is simply 
Tr{R^) = 1 + 2 cos <f> 

We need also to know that for any square matrices A and B (of 
the same order) we always have 

Tr(AB) = Tr(BA) 

as may rather easily be shown when we recall the rule for mul- 
tiplying matrices. See proof in margin. 

Now consider the rotation through an angle <j> about the axis 
v0, represented by the matrix A. We rewrite this rotation as a 
sequence of rotations about coordinate frame axes, as follows. 
First, we rotate the frame about the Z-axis so that the X-axis 
coincides with the projection of Vo onto the XY plane. We fol- 
low with a rotation about the new y-axis so that the new x-axis 
coincides with the vector Vo. We may represent the product of 
these two rotations by the matrix Q, and we know that Q is 
orthogonal and has determinant +1. Then we rotate the result- 
ing frame about the vector v0, that is, about the new x-axis, 
through the angle <j). Call this rotation RQ. From our earlier 
work we know that 

Rrh    = 

1       0 0 

0    cos <fr    sin <j) 

0   — sin <j>   cos (f> 
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We note, incidentally, that 

Tr(R<j>) = l + 2cos<£ 

Finally, we follow that rotation with the inverse of the rotation 
Q, which, since Q is orthogonal, is just Ql. Although it is not 
too easy to see geometrically, the sequence of these rotations 
is exactly equivalent to our original rotation represented by the 
matrix A, so we must have 

A   =   Q'R^Q 

where <f> is the angle of rotation. But then we have 

Tr(A)   = TriQtR^Q) 

= TV(Q(Q%)) 

= 7V((QQf)Ä,) 

= Trilfy) 
= TriR*) 

Hence we obtain the equation 

Tr(A) = l + 2cos0 

which, if we solve for (/>, gives the following formula for the angle 
of the rotation 

Tr(A) - 1 
<p = arccos  (3.4) 

3.5    A Numerical Example 

No doubt a simple numerical example will help the reader to 
understand the material in the preceding section. Consider an 
XYZ coordinate frame, with the vector v0 = (1,1,1) in that 
frame. We consider a rotation of the frame about the vector v0 
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through an angle (f) = 2TT/3. It is geometrically clear that such 
a rotation results in a new frame in which the new x-axis now 
coincides with the former Y-axis, the new y-axis coincides with 
the former Z-axis, and the new z-axis coincides with the initial 
X-axis. It is interesting to note that a sequence of three such 
rotations simply carries the intial coordinate frame into itself. 

We now wish to find the. matrix A which represents this 
rotation. Consider the initial X-axis, and in particular the point 
(1,0,0) on that axis. Since the points (or vectors) are fixed while 
the frame rotates, after the rotation this point will lie on the 
new z-axis, and hence the new coordinates of the point must be 
(0,0,1). In the same way we determine that the rotation we are 
considering must change coordinates of points on the coordinate 
axes of the initial coordinate frame in this way 

(1,0,0) 

(0,1,0) 

(0,0,1) 

(0,0,1) 

(1,0,0) 

(0,1,0) 

This tells us that we are looking for a matrix 

A   = 
an ai2 «13 

0-21 0.22 023 

031 032 0-33 . 

such that 

' 1' r o "1 
0 = 0 
0 l 

The reader should now check that this equation implies that 

an = 0,   a2\ = 0,   a3i = 1 
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r o l 0] 
0 0 l 
l 0 0 

Proceeding in exactly the same way with the remaining two 
vectors above, we obtain the rotation matrix A as 

A   = 

Given the matrix A, we can now find the coordinates of any 
point v = (a;, y, z) relative to the rotated frame simply be cal- 
culating the product Av. 

The reader should note that if we think of the three points 
(1,0,0), (0,1,0), and (0,0,1) on the axes of the intial coordinate 
frame as forming the columns in an identity matrix, then the 
matrix A is simply this identity matrix with its column shifted 
one column to the right. In general, the matrix which represents 
a rotation has columns which give the new coordinates of these 
points in the rotated frame. 

Now suppose we are given the matrix A above, and are asked 
what sort of transformation of R3 it represents. We check that 
A is orthogonal and has determinant +1, which tells us that 
A does represent a rotation. What is the axis of the rotation? 
To find the axis we simply look for the fixed vector, that is a 
vector v0 = (x0, y0, zQ) such that v0 does not change under the 
rotation. We must have 

'0   10" £o XQ 

0   0   1 Vo = 2/0 
1   0   0 . zo . . zo . 

The reader may now check, if she 
thinks it necessary, that the ma- 
trix A indeed is orthogonal and 
has determinant +1. 

If we solve this system, we find that 

x0 = y0 = z0 = k 

for any real number k. This means the vector (k, k, k), for any 
non-zero real number k, is fixed. In particular we might desig- 
nate (1,1,1) as the axis of the rotation. No surprise here, right? 
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Finally, the trace of the matrix A is 

Tr(A) = 0 + 0 + 0 = 0 

so that the angle of the rotation is given by 

(p   =   arccos —-— 

=   arccos(—1/2) 

=   2TT/3 

which of course is just what we expected. 

3.6    An Application - Tracking 
In this section we discuss an application of rotations in R3, a 
familiar rotation sequence called the Tracking Transformation. 
Consider a remote object, such as an aircraft, which is to be 
tracked from some point on the surface of the earth. The Local 
Tangent Plane is simply a plane tangent to the surface of the 
earth at this point. We define an initial coordinate frame with 
the X and Y axes lying in this tangent plane, pointing in di- 
rections North and East respectively. The Z-axis is geocentric, 
that is, it points toward the center of the earth. We then have 
a right-handed coordinate frame. 

We define an angle a, called Heading, which is the angle in 
the tangent plane between North and the projected direction to 
the remote object. We also define an angle ß, called Elevation, 
which is the angle between the tangent plane and the direction 
to the remote object being tracked, as in Figure 3.3. 
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To Remote 
ect 

To Remote 
Object 

Rotation about the Z-axis 

To Remote 

Figure 3.3: Tracking Transformation 

Rotation about the new y-axis 

Tracking Rotation Sequence 

The Tracking Transformation is first a rotation about the 
Z-axis through the angle a, followed by a rotation about the 
new y-axis through the angle ß. Notice that in the resulting 
coordinate frame the new x-axis is pointing directly toward the 
object being tracked. 

If R is the 3x3 matrix representing this rotation, our pre- 
ceding results tell us that 

R   = Ry
ßR

z
a         (See note in margin) 

" cos/3   0   — sin/3 cos a     sin a   0 
0      1        0 — sin a   cos a   0 

sin/3   0    cos/3 0           0      1 

Rotation Notation 

Here we introduce a new notation: 

means a rotation about the z-axis 
of the input frame through an an- 
gle equal to minus theta, in this 
case. 
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cos a cos ß   sin a cos ß   — sin ß 
— sin a cos a 0 

cos a sin ß   sin a sin ß    cos /? 
(3.5) 

' Xi  " " Xi ' 

2/1 = Vi 

.  *1  . . 2i . 

This composite tracking transformation may be represented 
as an equivalent transformation which consists of single rotation 
through some angle about some axis. The axis for this single 
rotation is found by finding the fixed vector for the rotation 
operator, that is, a vector v = (x\,y\,Z\), say, such that 

flv = v 

Thus we have to solve the equation 

cos a cos ß   sin a cos ß   — sin ß 
— sin a cos a 0 

cos a sin/?   sin a sinß    cos/3 

Our rules for matrix multiplication tell us that we must then 
have 

£icosa:cos/? + j/i sin a cos/3 — zisin/?   =   x\ 

—x\ sin a + yi cos a + z\ • 0   =   yx 

x\ cos a sin ß + yx sin a sin ß + Z\ cos ß   =   z\ 

These equations are easily rewritten in the form 

xi(cosacos/3— 1) + yi sin a cos/3 — z\smß   =   0 

—xxsina + yi(cosa — l) + zi-0   =   0 

XiCOsasin/? + ?/isina:sin/? + 2:i(cos/?- 1)   =   0 

Now this is a system of homgeneous equations, which always has 
the trivial solution v = (0,0,0). In order to get a non-trivial 
solution we may, if we like, set 

x\ = k 
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for any non-zero real number k. Then from the second equation 
above we get 

A; sin a 
V\ =  cos a — 1 

Finally from the third equation we calculate 

—k cos a. sin ß — y\ sin a sin ß 
Zl   = cos/3-1 

_   — kcos2a sin ß + k cos a sin ß — k sin2 a sin ß 
(cos/3- l)(cosQ:- 1) 

_   -ksinß(cos2a + sin2 a.) + & cos a sin/3 
(cos/3— l)(cosa - 1) 

&sin/3(cosa: — 1) 
(cos/3 — l)(cosa — 1) 
ksinß 

cos/3 — 1 

Thus our tracking transformation has axis of rotation given by 

ksma      ksinß \ 
v= Ik, 

cos a — 1' cos ß — 1 

Notice that in this computation we determine only the direction 
of the axis of rotation. Should we wish to obtain a specific vector 
as the axis of rotation we may, for instance, choose k = -1, to 
obtain 

v=   -1, 
sin a sin ß 

1 — cos a' 1 — cos/3. 
(3-6) This form for Equation 3.6 is 

clearly not valid for a = 0, in 
which case Equation 3.7 is appro- 
priate. 

We note that by using the trigonometric identity 

1 - cos a. = 2 sin — 
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Remember that the trace is merely 
the sum of the elements on the 
main diagonal of a square matrix. 

we may write the following expression for the axis of the rotation 

(3.7) 

We shall look at this relationship later. 

f    .   a .  0       a .   ß   .   a      ßy 

v = f - sin - sm -, cos - sin -, sin - cos - 

In order to find the angle of rotation we compute the trace 
of the rotation operator R as 

trR = cos a cos ß + cos a + cos ß 

We then obtain the angle of rotation, say <j>, from the equation 

trR = cos a cos /? + cos a + cos ß = l + 2cos<£ 

Solving this equation for <$> gives 

cos a cos ß + cos a + cos ß - 1 
4> = arccos (3.8) 

We may make the example even more specific if we consider 
a numerical version of it. Suppose a remote object has heading 
a = 7r/6 and elevation ß = 7r/3, as in Figure 3.4. Then we have 

sina = cos/? = 1/2, sin/? = cosa = A/3/2 

Thus, according to Equation 3.6, the axis of the rotation is 

>/3/2 \ 
v    -    ^-1, 

-r-i. 

Li     V2      v3/M 
V     '1-V3/2'I-I/2J 

1 
f.V5 2-V3" 

=   (-1.000,3.7321,1.732) 
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To Remote 
Object 

Figure 3.4: Rotations to Tracking Frame 

According to Equation 3.8, the angle of rotation is given by 

'cos a cos ß + cos a + cos ß — l\ 
<f)   —   arccos 

=   arccos 22T   2   ^ 2       x 

arccos 
/3y/3-2> 

= arccos (.3995) 

= 1.159 radians 

=   66.41 degrees 
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The two coordinate frames, namely, the reference frame XYZ 
and the rotated frame xyz are represented in Figure 3.5, along 
with the rotation axis V. A rotation about this axis (through an 
angle 66.41 degrees, in our example) takes the reference frame 
into the rotated frame. 

We emphasize: The vector V is 
the direction of the axis of the sin- 
gle rotation which takes the XYZ 
reference frame into the xyz ro- 
tated tracking frame. 

To Remote 
Object 

X (North) 

Figure 3.5: Frame Rotation Example 

There is one more numerical result which we may verify in 
the preceding example. With a and ß chosen as above it is easy 
to verify that the object being tracked lies in the direction of 
the vector 

(V3/2,l/2,-V3) 



3.7.   TRACKING-A GEOMETRIC ANALYSIS 77 

This vector has length 2, again easily verified. Under the track- 
ing transformation, in the final coordinate frame this vector lies 
along the final x-axis, so in this last coordinate frame it must 
be the vector 

(2,0,0) 

With the given values for a and ß, the rotation matrix (see 
Equation 3.5) is 

A   = 
V3/4     1/4 -A 
-1/2   v/3/2 0 
3/4     x/3/4 1/2 

["V3/2 1 ' 2 " 
1/2 = 0 

L-V5 0 

The reader may now verify that 

v/3/4     1/4     -V5/2 
-1/2   v/3/2        0 
3/4    73/4      1/2 

and so the expected result has been obtained. 

For most readers it may not be so easy to visualize these 
results, but it is quite useful to be able to do so. For that rea- 
son, in the next section we analyze the Tracking Transformation 
example again, this time from a geometric point of view. 

3.7    Tracking-A Geometric Analysis 

In an effort to gain some further geometric insight into how the 
constituent rotations are related to the equivalent composite ro- 
tation, we now consider again the tracking application as shown 
in Figure 3.6. In this tracking application these two rotations, 
Rz

a and RVß, are taken about mutually orthogonal axes: first, 
about the Z-axis, and then about the new y-axis, y\. 
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(North) 

Figure 3.6: Rotations Rz
a and Rß 

X0 j  To Remote 
Object 

(North) 

Figure 3.7: Rotation Axis OE takes X into x2 
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With respect to the fixed reference frame, XYZ, the indi- 
cated z2-axis is directed towards, that is, tracks the remote ob- 
ject. The x2y2Z2 frame is related to the XYZ reference frame 
by the indicated rotations: a rotation through the heading an- 
gle a about the reference Z-axis, followed by a rotation through 
the elevation angle ß about the new y-axis j/i, as shown in Fig- 
ure 3.6. As we already know, a single rotation about the axis 
of the composite rotation takes the axes: X into X2, Y into 2/2, 
and Z into z2. We will now find the direction of this axis from 
the angles and the geometry which relates the two frames. 

To Remote 
Object 

X (North) 

Figure 3.8: Rotation Axis OC takes X into x2 

We begin by considering rotations which will take X into x2; 
two such rotations are shown in Figure 3.7 and in Figure 3.8. 
The first rotation, through LBOA (see Figure 3.7), is about the 
axis OE. This axis is normal to the plane containing X and X2. 
Note, this rotation takes point B into point A along the great 
circle arc BCA. This axis OE, however, is not the only axis of 

Note that the direction of the axis 
OE is found by calculating the 
cross-product X x 12. 
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Figure 3.8 

rotation which will take X into x%- The second rotation which 
takes X into Xi is about the axis OC through an angle n as 
shown in Figure 3.8. The axis OC lies in the plane containing 
X and X2, and it bisects LAOB. In this case, the rotation takes 
point B into point A along the circular path BLA. 

In summary, we have found two rotations, with axes OE and 
OC, respectively, both of which will rotate X into x-i. However, 
neither of these rotations, in general, will also take the axes Y 
into y2 and Z into z<i (see Figure 3.6). 

To Remote 
Object 

Y(Easl) 
(North) 

Figure 3.9: Locus of Axes which take X into x 

The two distinct rotation axes, OC and OE, each take X 
into xi- These two axes (vectors) define the plane shown in Fig- 
ure 3.9. This plane through the origin represents the locus of 
all possible directions for axes about which rotations which will 
take X into x^. One of these directions must also take Y into 
y-i and Z into Z2, as we will show. 
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The reader should convince herself that a rotation, through 
an appropriate angle, about any axis through the origin and ly- 
ing in this plane will take X into x2. For instance, let F be any 
point distinct from the origin in the plane OCE. It should be 
clear that the point F is equidistant from the points A and B. 
Therefore, OA (that is, x2) and OB (that is, X) are generators 
of a circular cone whose axis is OF; hence, some rotation with 
axis OF takes X into x2. 

What we must do, therefore, is to find that particular axis 
in the plane OCE which takes not only X into x2 but also Y 
into 2/2 and, consequently, Z into z2. To do this we must find 
the intersection of two planes. The first plane, OCE, which we 
have already described above, contains all axes which rotate X 
into x2. A second plane, which we will find in a similar fashion, 
contains all possible axes which take Y into y2. The intersection 
of these two planes defines the axis about which a single rotation 
will take the reference coordinate frame XYZ into the tracking 
coordinate frame x2y2z2. 

Remember: The planes EOC 
and AOB are perpendicular and 
the segment OC bisects angle 
AOB. Moreover, since points A 
and B lie on the sphere, OA is 
equal to OB. 

We now find this desired axis of rotation by first finding 
the equations of these two planes. The direction of the line of 
intersection is the direction of the rotation axis for the composite 
rotation, that is, for the tracking transformation. 

3.7.1    All Axes which take X into x2 

We first find the equation of the plane containing all possible 
directions for rotation axes which take X into x2. This is the 
plane OCE shown in Figure 3.9. As usual, we find this plane 
by finding its normal vector, which we denote nx. 
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We find iix by taking the cross-product of the vector OE 
with the vector OC. Since the vector OE is the normal vector 
which defines the plane OAB, we have 

OE   =   0~BxO~A 

We leave it to the reader to ver- 
ify that the entries in the 3rd row 
of this determinant are the com- 
ponents of the vector OA shown 
in Figure 3.9 

Here we use "9J" to indicate that 
the vectors have the same direc- 
tion — not necessarily the same 
length. 

i j k 
1 0 0 

cos a cos /?   sin a cos /?   — sin ß 

=  jsin/? + ksinacos/? 

Since OC bisects LAOB the direction of the vector OC is 
the direction of the vector sum OB + OA. This we may write 

OC   =   OB + OA 

=   i(l + cos a cos/?) + j sin a cos/? — ksin/? 

We now compute the normal to the plane OCE as 

nx   =   OCxO~E 

i j k 
(1 + cos a cos/?)   sin a cos/?      —sin/? 

0 sin /?       sin a cos /? 

=   i(l — cos a: cos/?) — j sin a cos/? + k sin/? 

In summary, this vector, nx, is the normal vector to a plane 
which contains the origin. It is also this plane which contains 
all possible rotation axes for taking X into x2. 

3.7.2    All Axes which take Y into y2 

We now find the equation for the plane DOZ which is the locus 
of all possible directions for rotation axes which take Y into y2 
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(see Figure 3.10). Notice that the Z-axis is normal to the plane 
of Y and y2, and that OD bisects the angle between Y and y2. 
Clearly, a rotation about the Z-axis takes Y into y2. Moreover, 

To Remote 
Object 

Figure 3.10: Locus of Axes which take Y into y 

a rotation about the axis OD through and angle 7r, also takes 
Y into y2. Hence, just as before.the plane DOZ which contains 
both of these two axes, must therefore contain all axes which 
take Y into y2. 

The normal to the plane DOZ, which we denote nv, is de- 
fined by the cross-product of vectors OD and k (along the Z- 
axis). The reader may verify that the direction of OD is qiven 
by 

0~D   =   -isina+j(l + cosa) 
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Therefore ny   =   ODxk 

i J k 
— sina   (l+cosa)   0 

0 0 1 

=   i(l+ cosa)-f-jsina: 

In summary, this vector, ny, is the normal vector to the plane 
which contains the origin and also all possible rotation axes for 
taking Y into y2 ■ 

Note: The orthogonality of coor- 
dinate axes is preserved under ro- 
tations. 

3.7.3    Rotation Axis for both X into x2 and 
Y into y2 

The two normal vectors, nx and n„ computed above, define two 
intersecting planes. These two planes, both of which contain the 
origin, represent the locus of all possible axes which take X into 
x-2 and Y into y2, respectively. The line of intersection of these 
two planes defines an axis of rotation in each plane. A rotation 
about this common axis, therefore, not only takes X into x2 but 
also takes Y into y2, and therefore it must also take Z into z2. 
This common axis is the intersection of the two planes as shown 
in Figure 3.11. 

The cross-product, ny x nx, gives the vector direction, V, of 
this line of intersection. To compute this cross-product we write 

V   = 
i                       j k 

(1 + cosa)              sin a 0 
(1 — cos a cos ß)   — sin or cos ß sin ß 

i sin a sin ß 

—j(l + cos a) sin ß 

—ksina(l + cos/?) 
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or if expressed in terms of half-angles 

a      ß 
V   =   —i sin — sin — 

2       2 
a      ß 

+j cos - sin - 

+k sm — cos — 

But this is exactly the result we obtained in Equation 3.7. 

X (North) 

Figure 3.11: Composite Rotation Axis 

This completes our preliminary analysis of rotations in R3. 
Up to this point we have considered rotations in R3, as well 
as sequences of two such rotations. We shall, however, need to 
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consider sequences of several such rotations, and we turn to that 
consideration in the next chapter. 

The group SO(3) is comprised of 
all 3X3 orthogonal matrices whose 
determinant is +1. 

The angle ß can never achieve an- 
gles such that ß > ^. In practice, 
any attempt to do so through the 
angle/? = £, especially in mechan- 
ical systems such as certain Gyro- 
scopes, causes a condition called 
Gimbal Lock. 

3.8    Singularities in SO(3) 

Designers of Coordinate Transformers know well that 

Inherent in every minimal Euler angle rotation se- 
quence in SO (3) — the group whose elements are 
the Special Orthogonal matrices in R? — is ai least 
one singularity. 

In order to gain some insight and understanding of what this 
statement means, we consider again the familiar tracking se- 
quence described in Section 3.6. That particular (most common) 
tracking example involved a rotation through an angle a about 
the z-axis, followed by a rotation through an angle ß about the 
new y-axis. The domain for these tracking angles is 

—7T < a < ir and TT/2 ^ ß. ^ *72 

For any a, as the angle ß increases from f - e toward, say, 
§ + e, the angle a, when ß = §, must instantaneously go to 
a + 7T. This is necessary to maintain the uniqueness of (a, ß) 
over the unit sphere. The behavior of a at ß = | represents 
the singularity for this particular tracking sequence; every Eu- 
ler angle-axis sequence in SO(3) has at least one such singularity. 



Chapter 4 

Rotation Sequences in Ä3 

4.1    Introduction 

In the preceding chapter we showed that a 3 x 3 matrix repre- 
sents a rotation in R3 if and only if it is an orthogonal matrix 
and has determinant +1. We also showed that the product 
of two rotation operators is another rotation operator, and we 
developed methods for finding the axis and the angle for any 
rotation represented by a matrix. Further, we found the ma- 
trices representing rotations about each of the coordinate axes, 
and we used these in our tracking example. However, up to this 
point we have actually used only a sequence of two such rotation 
operators. In the work that follows it will be important to ana- 
lyze sequences of several such rotation operators, and so in this 
chapter we introduce a convenient notation which allows us to 
do just that. We shall also introduce the important concept of 
Euler angles, and shall consider three important examples: an 
Aerospace Sequence, an Orbit Ephemeris Sequence, and a Great 
Circle Navigation Sequence. 

87 



88 CHAPTER 4.   ROTATION SEQUENCES IN R3 

C4 a 

z4 

Rotation Symbol 
This symbol represents a rotation 
of, in this case, the 4th coordinate 
frame, denoted C4 about, in this 
case, the z-axis (then, of course, 
25 = 24) thru a positive angle a 
to coordinate frame C5. The new 
frame is related to the old frame 
by the equations 

15 = 14 cos a + j/4 sin a 

1/5 = IM cos a — 14 sin a 

25    =    24 

Clearly, the coordinate frame c„ 
consists of coordinate axes i„, Vn. 
and 2n, etc. A positive rotation 
is always a right-handed rotation 
about the indicated axis. 

4.2    Equivalent Rotations 

Earlier, in Section 2.5.3, we introduced the idea of equivalent 
rotations, that is, different rotations which result in the same fi- 
nal vector-frame relationship. In particular, we mentioned that 
a rotation of the reference frame through an angle 9 while the 
points (or vectors) remain fixed results in the same vector-frame 
relationship as does rotating the points (or vectors) through the 
angle —9 while the reference frame remains fixed. We noted also 
that the inverse of a rotation through an angle 9 is a rotation 
about the same axis through the angle —9, and further that the 
rotations of the reference frame and rotations of the points (or 
vectors) are exactly the inverses of each other. 

In this section we consider several sequences of rotation op- 
erators which result in the same final vector-frame relationship. 
Such rotation sequences are said to be equivalent. It is helpful 
here to introduce a convenient notation, pictorial in nature, for 
representing and even constructing these sequences. This nota- 
tion will allow us to represent sequences of rotation operators in 
a sort of flow chart form. 

4.2.1    New Rotation Symbol 

Up to this point we have used the symbol Rz
a to represent, say, a 

rotation through an angle a about the Z-axis. Our new symbol 

-0- 
Figure 4.1: Our New Rotation Symbol 

for this same rotation is given in Figure 4.1. Also see the note 
in the margin. 
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The notation for a sequence of rotation operators is then a 
string of these symbols, the order of the sequence being from left 
to right. Thus the sequence of two coordinate frame rotations 
which are represented by the matrix in Equation 3.5 is symboli- 
cally represented as shown in Figure 4.2. Proceeding from left to 
right, the first rotation is through an angle a about the Z-axis, 
followed by a second rotation through an angle ß about the new 
y-axis. 

z y 

Figure 4.2: The Tracking Rotation Sequence 

It is clear, as we have remarked before, that the inverse of a 
rotation through an angle a about some axis is simply a rotation 
through the angle —a about that same axis. Further, it is clear, 
particularly in the case of the tracking example, that the inverse 
of a sequence of rotation operators is simply the product of the 
inverses of the individual rotations in the sequence, written in 
reverse order.   Thus the inverse of the tracking sequence is a 

Figure 4.3: Tracking Sequence and its Inverse 

rotation through the angle —ß about the y-axis, followed by a 
rotation through the angle -a about the Z-axis. This certainly 
is clear geometrically, if not algebraically. Our new notation 
nicely represents this fact as is shown in Figure 4.3. 
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In this figure, the closed-loop merely indicates that the final 
frame is the same as the initial frame; that is, this sequence is an 
identity. Such a sequence is said to be closed. This attribute of 
a sequence we will find very useful in our analysis of coordinate 
relationships. The solid line which closes the loop emphasizes 
that the output frame of this sequence of rotations is exactly the 
same as its input frame. That is to say, the final vector-frame 
relationship produced by the closed sequence is exactly the same 
as the initial vector-frame relationship to which the sequence is 
applied. 

4.2.2    A Word of Caution 
For any sequence of rotations, we must understand that the axis 
of rotation, indicated below each rotation symbol, is always one 
of the axes of the input frame to that particular rotation symbol. 

Cn+1 

c"^!/\!/    Cn+2 

Zn yn+1 

Figure 4.4: Rotation Sequence Notation 

In any sequence of rotations if, as shown in Figure 4.4, we let c„ 
denote the nth coordinate frame whose axes are xn, yn, and z„ 
then, the frame, denoted c„+i is the output frame after the a- 
rotation and it is the input frame to the /3-rotation. Therefore, 
in this case, 

and   yn+2   =   yn+i 

In the light of this explanation, there should be no ambiguity as 
to the axes indicated in the notation used in Figures 4.2. 



4.2.  EQUIVALENT ROTATIONS 91 

Further, it should be clear that, in general, subscripts are not 
necessary in the notation for rotation sequences — especially, 
closed sequences. To minimize congestion, from this point on 
subscripts will be used only when absolutely necessary. 

4.2.3    Another Word of Caution 

In the applications which follow we will often encounter angles 
which have a well established and accepted meaning. These 
angles have a sense, positive or negative, determined by some 
convention independent of the coordinate frame. For example, 
by convention we consider East Longitudes to be positive, so 
that West Longitudes are negative. Similarly, we take North 
Latitudes to be positive and South Latitudes to be negative. 

On the other hand, the sense of the actual rotation angle 
itself will always be determined by the right-hand rule as it is 
applied to the coordinate frame at that point. The problem is 
that the sense of the rotation angle may or may not agree with 
that of the angle defined by convention. (For example, consider 
Longitude or Latitude angles.) 

Our new notation is designed to alleviate this difficulty, in 
the following way. In this notation, the circle always displays 
the rotation angle. If, say, a is the angle defined by convention, 
our new notation will display a in the circle whenever these two 
senses (convention sense and right-hand rule sense) agree; if the 
senses do not agree, then we write -a in the circle. Therefore, 
it is very important, at each point in a rotation sequence to be 
certain of the coordinate frame right-hand rule orientation, as 
well as the sense of the angle as conventionally defined. In the 
examples which follow, we shall be careful to do this. The Great 
Circle Navigation application considered later in Section 4.6, is 
an important case in point. 
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Sub-sequence Length 

In applications, sub-sequences will 
consist of. at least, two rotations. 

4.2.4    Equivalent Sequence Pairs 

We now consider a closed sequence of n Euler angle-axis rota- 
tions, Ri, for n > 4. We write the product of these rotations 
as 

\\Ri  = RlR2Ri-..Rn  = I (4.1) 
i=l 

We emphasize that closure means that the sequence must be 
an identity, as indicated. This entire identity sequence may be 
partitioned at any point in the sequence into two contiguous 
sub-sequences as follows 

N 

RiR2---RkRk+iRk+2---Rn = 1= Identity (4.2) 
M 

Several such sub-sequence pairs are, in general, possible. The 
first sub-sequence, comprising the first k rotations, we will call 
sequence M; the second sub-sequence, which comprises the re- 
maining successive n — k rotations, we will call sequence N. 
Then, of course, we have 

That is, 

MN   =   I = 

M   =   N-1 

Identity 

= N* 

More explicitly this means that M and Nl are equivalent Euler 
angle-axis rotation sequences. Thus, given a closed sequence, it 
is easy to find equivalent sequence pairs, as we do in the next 
section. 

4.2.5    An Application 

We will now use the ideas in the foregoing sections to deter- 
mine a sequence of three rotations which we will show is exactly 
equivalent to the tracking sequence, in the sense we have just 
been discussing. 
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For this new sequence we arbitrarily let the first rotation be 
about the X-axis through an angle ip. The second rotation we 
take about the new y-axis through an angle 6, and the third 
rotation we take about the newest x-axis through an angle </>. 

-&<&&* 

Figure 4.5: An Equivalent Rotation Sequence 

We note, incidentally, that we could have used any sequence of 
three rotation axes, as long as successive axes are distinct. 

Our claim is that there are appropriate angles for each of 
the three indicated axes, represented in Figure 4.5, such that 
the composite rotation is equivalent to the tracking rotation in 
Equation 3.5.  Incidentally, the sequence of rotations shown in 

-0©©€)€h 
Figure 4.6: An Identity Rotation Sequence 

Figure 4.2 followed by the inverse of the equivalent sequence 
shown in Figure 4.5, must be equivalent to the identity. In 
other words, the resulting output frame must be the same as 
the input frame. This fact is indicated in Figure 4.6 by the line 
connecting the output to the input of the rotation sequence. 

We justify our claim by showing that the required angles 
if), 6, and <f> indeed do exist. In fact, we find expressions from 
which the required angles may actually be calculated. In terms 
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of rotation matrices, we must have 

R = R^RßR^, = RßRa 

Using the matrices of the form given in Equations 3.2 and 3.3 we 
calculate the product of the rotation operators on the left side of 
the above equation. Then, equating the elements in this matrix 
with the corresponding elements of the matrix in Equation 3.5, 
we obtain the following set of equations 

ru = cos0 = cos a cos/? 
ri2 = sin ip sin 6 = sin a cos /? 
r13 = — cos ip sin 6 = — sin ß 
r2i = sin 6 sin <f> = — sin a 
T22 = cos ip cos <f> — sin ifi cos 6 sin 4> — cos a            (4.3) 
r23 = sin ip cos <j> + cos ip cos 6 sin <j> =0 
r3i = sin Ö cos 0 = cos a sin/? 
7*32 = — cos ip sin (j) — sin ip cos 0 cos 0 = sin a sin ß 
r33 = — sin -0 sin (f> + cos ip cos 0 cos (j) = cos /? 

Prom rn we get 
cos 0 = cos a cos /? 

Dividing r2i by r3i gives 

tana 
tan© = ;—— 

sinp 

Dividing r12 by r13 gives 

sin a 
tan^> = 

tan/? 

Thus we have obtained expressions for the angles ip, 6, and (j> 
as functions of angles a and /?. Hence, given values for a and 
/? we may compute values for the required three angles. The 
solutions, in general, will not be unique, as is the case for most 
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trigonometric equations.  Uniqueness can be obtained by care- 
fully specifying the allowable domains for these angles. 

Many other rotation sequences are also equivalent to the 
tracking rotation sequence. We have merely demonstrated the 
existence of such sequences of rotations through three Euler an- 
gles. In the next section we explore such sequences in more 
detail. 

4.3    Euler Angles 

Leonard Euler (1707-1783) was one of the giants in mathemat- 
ics. Among the myriad of noteworthy contributions he made to 
the Physical Sciences in general, and mathematics in particu- 
lar, many of which bear his name, is his work in Mechanics and 
Dynamics. In connection with his work in celestial mechanics 
Euler stated and proved a theorem which is closely related to 
our work here. The theorem states that 

Any two independent orthonormal coordinate frames 
can be related by a sequence of rotations (not more 
than three) about coordinate axes, where no two suc- 
cessive rotations may be about the same axis. 

When we say 'two independent coordinate frames are related we 
mean that a sequence of rotations about successive coordinate 
axes will rotate the first frame into the second. 

This theorem, which we do not 
prove, guarantees the existence of 
sequences of three such rotations 
which properly relate two indepen- 
dent coordinate frames. We will 
find such sequences for a number 
of interesting examples. 

The angle of rotation about a coordinate axis is called an Eu- 
ler Angle. A sequence of such rotations is often called an Euler 
Angle Sequence, or more precisely an Euler Angle-axis Sequence, 
since the sequential order of the axes about which each rotation 
is taken is an important matter. 

The restriction that successive axes of rotation be distinct 
still permits at least twelve Euler angle-axis sequences. That is 
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to say: Any two arbitrary but distinct coordinate frames may be 
completely related using any one of twelve different angle-axis 
sequences. These twelve axis-sequences are 

xyz yzx zxy 
xzy yxz zyx 
xyx yzy zxz 
xzx yxy zyz 

We read these sequences from left to right; that is, the sequence 
xzy means a rotation about the X-axis, followed by a rotation 
about the new z-axis, followed by a rotation about the newer 
y-axis. Notice that in our example of the preceding section we 
used the sequence of axes xyx. We could as well have used any 
one of the other sequences. 

These angles are called Euler angles because it was Leonard 
Euler who first used angle sequences to determine orbit relation- 
ships in celestial mechanics. In the remaining sections in this 
chapter we give several examples and applications of specific Eu- 
ler sequences which are of current interest. The first example is 
the well-known Aerospace sequence, described in the next sec- 
tion. A second example we call the Orbit sequence. Then, as an 
application of these two sequences we show how one might com- 
pute the Orbit Ephemeris of, say, a near-earth satellite. Finally, 
we use an Euler angle sequence in an application for navigation 
which determines the great-circle course between two points on 
the surface of the earth. 

It is helpful if in the presentation 
of the Aerospace sequence we iden- 
tify intuitively with the Heading 
and Attitude Indicator in an air- 
craft. 

4.4    The Aerospace Sequence 

In the Euler Angle-axis Sequences tabulated in the preceeding 
section, zyx, is the sequence commonly used in Aircraft and 
Aerospace applications. For example, a primary flight instru- 
ment in virtually every cockpit, called the Heading and Atti- 
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tude Indicator, continuously relates the orientation of the Air- 
craft frame to a Reference frame (Earth's local tangent plane 
and North) in accordance with Figure 4.7. In this Aerospace 
application the positive x-axis of the aircraft body frame points 
forward along the aircraft longitudinal axis; the positive y-axis 

Reference 
Frame -&&&*- 

Aircraft 
Frame 

The Aircraft Heading and Atti- 
tude Indicator, which early-on has 
been commonly referred to as the 
'Eight-Ball', is perhaps the pri- 
mary flight instrument in the cock- 
pit of every aircraft. 

Figure 4.7: Aircraft Euler Angle Sequence 

is directed along the right wing; the positive z-axis is normal 
to the x and y axes, pointing downward. This defines a right- 
handed orthonormal body coordinate frame for the aircraft. 

The reference coordinate frame is defined in terms of the 
Earth's local tangent plane and North. That is, the positive Z- 
axis is directed geocentrically (downward). The positive X-axis 
points north in the tangent plane and the positive Y-axis points 
east. This 'local' Earth-referenced triad defines a right-handed 
orthonormal reference frame. 

These two frames are related by the Heading and Attitude 
sequence of rotations specified in Figure 4.7: From the Reference 
coordinate frame, first a rotation through the angle ip about the 
Z-axis defines the aircraft Heading. This is followed by a ro- 
tation about the new y-axis through an angle 6 which defines 
the aircraft Elevation. Finally, the aircraft Bank angle, </>, is a 
rotation about the newest x-axis. These three Euler angle ro- 
tations relate the Body coordinate frame of the aircraft to the 
local Reference coordinate frame of the Earth. 

The relative orientation of these two coordinate frames is 
illustrated geometrically in Figure 4.8. 

The terms Yaw, Pitch, and Roll, 
which are often incorrectly used 
to refer to the heading and atti- 
tude of an aircraft, are more prop- 
erly used to represent incremental 
deviations or perturbations of the 
current aircraft attitude and head- 
ing state. 
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Heading & Attitude 
Conventions 

As indicated in Figure 4.7, the 
sense of the angles, if), 0, and <f>, by 
convention agrees with the right- 
hand rule. That is, a positive 
heading angle, ip, is directed to 
the right; a positive elevation an- 
gle, 6, indicates climb; a positive 
bank angle, <j>, corresponds to a 
right turn 

Figure 4.8: Aerospace Euler Sequence 

The Aerospace rotation sequence of Figure 4.7, which is il- 
lustrated in Figure 4.8, is expressed as the matrix product 

R   = R<pRoRip 

R; 
-sinö 

0 
COS0 

0 

cos0   0 
0      1 

sin0   0 

1       0 
0    cos 4>    sin 4> 
0   — sin (f>   cos <f> 

cos ip cos 0 
cos ip sin 8 sin <p 

— sin ip cos (p 
cos ip sin 6 cos <p 

+ sin ip sin <p 

cos ip     sin ip   0 
— sin ip   cos ip   0 

0 0      1 

cos 0 cos ip   cos 0 sin ip 
— sin ip cos ip 

sin 0 cos ip   sin 0 sin ip 

sin ip cos 0 
sin ip sin 0 sin ^> 
+ cos ip COS 0 

sin ip sin 0 cos <p 
— cos ^ sin <p 

(4.4) 

— sin 0" 
0 

COS0 

— sinö 

cos 0 sin <p 

cos 0 cos <p 
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This product of rotation matrices is itself a rotation matrix 
which represents the Aerospace Sequence in terms of Heading 
&; Attitude. This matrix may be viewed as a single rotation 
about some axis (in general, not a coordinate axis) which takes 
the reference coordinate frame into the body coordinate frame. 
This is another important consequence of Euler's theorem. Us- 
ing our methods developed earlier we could, if we so desired, 
find the axis and the angle of this single rotation, which would 
be equivalent to this Aerospace Euler sequence of rotations. 

4.5    An Orbit Ephemer is Determined 

In Section 4.3 we listed the twelve possible Euler angle-axis ro- 
tation sequences. Each rotation in these sequences occurs about 
the indicated coordinate frame axes. In this section we consider 
the application of two such sequences to the determination of an 
orbit ephemeris associated with a near-earth orbiting satellite. 
An orbit ephemeris of such an orbiting body is simply a tabula- 
tion of the earth longitude and latitude of the remote body as 
a function of time. It specifies, for a given point in time, the 
location, on the surface of the earth, of the geocentric radial 
direction to the satellite. In Figure 4.9 the radial direction is 
specified by the point R, and the longitude and latitude of the 
point P, which is on the surface of the earth. 

In order to compute values for the parameters which define 
the orbit ephemeris, we define both an inertially fixed reference 
frame and an orbit frame. We then define two Euler angle-axis 
sequences of rotations, each od which relates the inertially fixed 
frame and the orbit frame. It is clear that these two sequences 
must be equivalent. This allows us to equate corresponding 
elements in the matrices which represent these two sequences, 
and in turn allows us to derive algorithms of interest. We begin 
with an Euler angle-axis sequence for orbits. 
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N = Ascending Node 

Figure 4.9: Orbit Euler Angle Sequence 

Actually, the relatively fixed direc- 
tion of the reference X-axis, which 
points to the constellation Aries, 
is established by the intersection 
of the Earth's Equatorial plane 
and the Earth's Orbital plane (also 
known as the Plane of the Eclip- 
tic). 

4.5.1    Euler Angle-Axis Sequence for Orbits 

It is quite likely the third or fourth sequence in column three 
of the tabulation in Section 4.3, namely, zxz or zyz, was the 
first sequence employed by Euler in connection with his work in 
orbit mechanics. We consider the orbit of a 'near-earth' satellite, 
and begin by defining an inertially fixed reference frame. In this 
reference frame the X and Y axes are contained in the equatorial 
plane of the earth, that is, a plane which contains the earth 
equator. The Z-axis is normal to this XY plane such that the 
XYZ frame is right-handed. Finally, the X-axis is 'fixed' in 
the direction of the constellation Aries. See Figure 4.9. For 
our purposes, this XYZ frame we adopt as our inertially fixed 
reference frame. 
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The orbit trajectory of the near-earth satellite is illustrated 
in Figure 4.9. The plane NOR is the orbital plane. This orbital 
plane and the equatorial plane intersect in a line ON, called 
the line of nodes, on which the point N is the ascending node. 
We define the orientation of the orbital plane by means of two 
Euler angle rotations from the inertially fixed reference frame, 
as shown in Figure 4.9. The first rotation is about the refer- 
ence frame Z-axis through an angle Q (Omega) such that the 
new positive x-axis contains the orbit ascending node, N. The 
second rotation is about this new x-axis through an angle t (iota) 

KE>OG> Reference_/^VyT\yVl-fc- °rbit 

Frame  ~V"/\l /V /^ Frame 

Figure 4.10: Euler Angle Sequence for Orbits 

such that the new y-axis lies in the orbital plane. The angle t is 
usually called the inclination angle of the orbital plane, and the 
new z-axis is normal to this orbital plane. 

We now define the orbit frame by using a third rotation about 
the new z-axis through an angle v (nu), so that the resulting 
new x-axis points toward the orbiting body. This sequence of 
three Euler angle rotations is called the Euler angle Sequence 
for Orbits. See Figure 4.10. In summary, the orbit frame has a 
geocentric origin, the x-axis contains the orbiting body, and the 
z-axis is normal to the plane of the orbit (directed such that it is 
in the direction of the orbit angular rate vector). The y-axis is 
directed such that the orbit frame is a right-handed coordinate 
frame. 

Proceeding just as before, we may now calculate the rotation 
matrix which takes the inertially fixed reference frame into the 
orbit frame. We have 



102 CHAPTER 4.   ROTATION SEQUENCES IN R3 

S   = 

N ■ Ascending Node 

Orbit Geometry 
The relevant spherical triangles 
are reproduced here and on sub- 
sequent pages as a reference to the 
rotations. 

QZ QX C2 (4.5 

[10         0  | cosf2     sinfi   0 
si 0    cos t     sin t — sin Q   cos fi   0 

0   — sin t   cos t 0           0      1 

cos v    sin v   0 cos Q              sin fi           0 
— sin v   cos v   0 — sin Ct cos t    cos Q cos t    sin t 

0          0      1 sin ft, sin t     — cos Q, sin t   cos t 

/   cos $1 cos v—   \    (   sinQcosH-    \ 
•   n           •                        n          •              sin t Sin 1/ y sin i I cost sin v 1    \ cos i I cost sin u 1 

I — cos f) sin v— \    ( — sinfisiniH-   \ 
.   „                                o                      sintcosi/ 

y sin i 2 cost cos v 1    \ cos i I cost cos v J 
sin Q sin t — cosfisint cost 

Once again, we recognize that this composite rotation ma- 
trix may also be viewed as a single rotation which will take the 
reference frame into the orbit frame. And, should we so desire, 
we could find the axis and the angle of this rotation. 

4.5.2    The Orbit Ephemeris Sequence 

The sequence shown in Figure 4.10, namely, the Euler angle Se- 
quence for Orbits, takes the inertially fixed reference frame into 
the orbit frame, with the newest x-axis through point P, which 
is on the geocentric line to the orbiting body (see Figure 4.9). 

In order to determine the orbit ephemeris, that is the Lati- 
tude and Longitude of point P on the surface of the earth, we 
invoke a zyx sequence, namely, an Aerospace Euler angle se- 
quence, such as the one shown in Figure 4.7. More specifically, 
we define this sequence so that it is exactly equivalent to the 
sequence for orbits shown in Figure 4.10. This sequence, shown 
in Figure 4.11, we call the Orbit Ephemeris Sequence. 
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Reference 
Frame -GKSMSK Orbit 

Frame 

Figure 4.11: Orbit Ephemeris Sequence 

The first rotation in this sequence is a rotation about the 
Z-axis through an angle a so that the new x-axis coincides with 
the line OQ in Figure 4.9. The second rotation is about the new 
y-axis through an angle -L (see margin), so that the new x-axis 
coincides with the line OR. (This was the case with the orbit 
frame in the preceding section.) The third rotation is about the 
newest x-axis, through an appropriate angle a, so as to rotate 
the y-axis into the orbital plane NOR. The result is then ex- 
actly the orbit frame of the preceding section. Thus the orbit 
ephemeris sequence of rotations, shown in Figure 4.11 must be 
equivalent to the Euler angle sequence for orbits, of Figure 4.10. 

In summary, we have the following notation: 

Q = angle to the orbit ascending node 
i = the orbit angle of inclination 
v = the argument of the latitude to orbiting body 
a = ephemeris path direction angle 
L = Earth-latitude of orbiting body 
A = Earth-longitude of orbiting body 

A0 = Greenwich wrt X-axis 
a = A + Ao 

The angle A0 locates zero longitude (Greenwich), on the sur- 
face of the rotating Earth, with respect to the X-axis (Aries) 
of the inertially fixed frame. Clearly, the parameters, v, a, L, 
and a, are time-varying functions of the orbital angular rate, u0, 
and the Earth's angular rate, ue. In what follows, however, we 
simply compute the ephemeris in terms of the orbit parameters. 

Note that the sense of the angle 
a agrees with that of the frame. 
However, the angle L in this se- 
quence is the latitude of point P. 
Its sense differs from that specified 
by the right-hand rule. Thus the 
rotation angle is -L, as shown in 
the Figure 4.11. 

Oibil 
Axil 

N * Ascending Node 

Orbit Geometry 
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The orbit ephemeris sequence is shown in Figure 4.11 and 
the matrix product which represents this rotation sequence is 

R   = KRUK -L 

cos L    0   sin L 
=   Rx

a       0       10 
-sinL   0  cosL 

10 0 
0    cos a     sin a 
0   — sin a   cos a 

cos a cos L 
— cos a sin L sin a 

— sin a cos a 
— cos a sin L cos a 

+ sin a sin a 

(4.6) 

COSC7 

— sin a 
0 

sma 
cos a 

0 

sinL 
0 

cos L cos a      cos L sin a 
— sin a cos a 

— sin L cos <r   — sin L sin a   cos L 

sin a cos L 
— sin a sin L sin a 

+ cos a cos a 
— sin a sin L cos a 

— cos o sin a 

sin L 

COSJL sin a 

cosL cos a 
. 

Since these two angle-axis sequences, namely the Orbit se- 
quence and the Ephemeris sequence, are equivalent, we may 
equate corresponding elements in their matrix representations, 
as given in Equations 4.5 and 4.6. If we equate the elements of 
the first row and third column, we obtain 

sin L = sin i sin v 

If in each matrix we divide the element in the second row and 
third column by the element in the third row and third column, 
and then equate the results, we have 

cos L sin a sin t cos v 
 = = tan a = = tan t cos v 
cos L cos a cos i 

Similarly, if in each matrix we divide the second element in the 
first row by the first element in that row and equate the resulting 
fractions we obtain 

sin a cos L sin Q cos v + cos Cl cos i sin v 
= tan a = 

cos a cos L cos fi cos v — sin Q cos t sin v 
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In this latter fraction we may divide all terms by the term 
cos Cl cos v to obtain 

tan a — 

In summary we have 

tan Q, + cos i tan v 
1 — tan Q cos i tan v 

sinL 

tana 

tan cr 

=   sin i sin v 

=   tan i cos v 
tan Q, + cos t tan v 

1 — cos i tan v tan f2 

We may now use these equations, given some point in time, to 
compute the latitude L to the orbiting body, as well as the angle 
a. Prom the angle a, given a value for Ao we may compute the 
longitude A to the orbiting body; that is, we may compute the 
orbit ephemeris, which was our goal. The angle a, incidentally, 
is related to the path direction of the ephemeris at a given time. 

4.6    Great Circle Navigation 

Our last example of the application of a sequence of Euler angle 
rotations deals with the problem of great circle navigation. In 
this example a rotation sequence is constructed for a great circle 
path between two points, A and B, on the surface of the earth, 
as shown in Figure 4.12. We assume that the latitude and lon- 
gitude for the points A and B are known, which means that in 
Figure 4.12 the angles Ai, A2, L\, and L2 are all given. 

Relative to this great circle path we specify three angles. The 
first is the angle ipx, which is the heading of the great circle path 
at point A, toward point B. The second is the angle 9, which is 
the radian distance along the path from point A to point B. The 

Great Circle Path 

The spherical trapezoid is redrawn 
here in the margin for reference as 
we step through the sequence of 
rotations. 
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CAUTION 

Conventionally, Longitude, A, and 
Latitude, L, are positive quanti- 
ties, measured either east or west 
from Greenwich zero, or north or 
south from the equator, respec- 
tively. In order to deal with these 
quantities algebraically, we shall 
define the domains for A and L, as 
follows: 

-re < A < it 

■K , IT 

2 2 

For Longitude, we define east to 
be positive and west negative. For 
Latitude, we take north to be pos- 
itive and south negative. 

third angle ip2, is the heading of arrival or the approach heading 
at point B. Heading, by convention, is always measured relative 
to North. In this section we derive algorithms for computing 
each of these angles. Again in this example we use a sequence of 

Figure 4.12: Great Circle Path 

Euler angle rotations. Our approach here, however, is somewhat 
different from our earlier examples. Here we shall construct a 
sequence of seven rotations, such that their product is the iden- 
tity. This composite identity sequence is then partitioned into 
two subsequences, say, M and N, as illustrated in Section 4.2.3. 
From this pair (which we know are inverses of one another) we 
then derive the desired algorithms. 

We begin the rotation sequence from an earth-fixed, right- 
handed XYZ-reference frame, as in Figure 4.12. The XY-plane 
lies in the earth's equatorial plane, the X-axis is directed pos- 
itively at Greenwich zero longitude, and the Z-axis coincides 
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with the Earth polar axis, directed North. 

Since it is often difficult to visualize and to properly interpret 
the geometric effect of a sequence of several rotations, we define 
each rotation and accompany it with a figure which shows its 
geometric effect. 

Figure 4.13: Rotation thru Ai about the Z-axis 

The first rotation in our sequence is a rotation about the 
Z-axis through the angle Ai, such that the new x-axis is in the 
direction of the longitude of point A, measured from Greenwich 
zero. 
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The second rotation is taken about the new y-axis through 
an angle L\ (the latitude of point A), such that the new x-axis 
contains the point A. Note, however, that the right-hand rule, 
as applied to this rotation defines a positive rotation direction 
which is opposite the sign of the indicated Latitude angle, L\. 
Therefore, the rotation angle must be the negative of L\, that 
is, -L\, as indicated later in Figure 4.20. 

Figure 4.14: Rotation thru L\ about the y-axis 

It is very important to emphasize that rotation directions 
(that is, whether positive or negative) are always frame depen- 
dent, as determined by the right-hand rule. In this second ro- 
tation this means that if L\ is positive, the rotation direction is 
negative, while if L\ is negative, the rotation direction is posi- 
tive. Hence the label -L\ at this point in the sequence. 
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The third rotation is about the new x-axis (which, inciden- 
tally, is the local vertical axis at point A) through the heading 
angle fa. The new z-axis now lies in a direction tangent to the 
great circle path at point A directed toward point B. This is 
the heading, at point A, of the great circle path from point A 
to point B. 

For clarity sake and to avoid picto- 
rial conjestion, here and in some of 
the following figures, we show the 
newly rotated coordinate frame on 
the surface of the sphere and prop- 
erly related to the great circle path 
we seek to define. 

Figure 4.15: Rotation thru fa about the x-axis 

By convention, the Heading angle, ip, is always positive (0 < 
ip < 27r). AS in the second rotation, the right-hand rule, how- 
ever, dictates a negative rotation direction. The required rota- 
tion angle is therefore labelled, -fa, as shown in Figure 4.15. 
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The fourth rotation is about the new y-axis through the an- 
gle 0. After this rotation the new x-axis contains point B and 
hence represents the local-vertical at point B. Note that the 
new z-axis now lies in a direction still tangent to the great circle 
path but at point B. Here again, the right-hand rule specifies 
the rotation angle to be — 9. 

Figure 4.16: Rotation thru 6 about the y-axis 

Since 6 is the radian distance between points A and B, the 
linear distance is equal to R0, where R is taken to be the radius 
of the Earth, in this application. 
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The fifth rotation is about the new x-axis through the an- 
gle tp2- This angle is the heading of arrival at point B. Since 
the rotation is about the x-axis, it remains in the local vertical 
direction at point B. After rotation through the angle, V>2, the 
new z-axis points north from point B and the y-axis points west. 

Figure 4.17: Rotation thru xß2 about the x-axis 
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The sixth rotation is about the new y-axis through the angle 
L2, which is the latitude of point B. After this rotation the new 
x-axis lies in the original XY-plane, and the new z-axis coin- 
cides with the original Z-axis of the XYZ Reference Frame. 

Figure 4.18: Rotation thru L2 about the y-axis 
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The seventh and final rotation in our sequence is about the 
new z-axis (which is the original reference frame Z-axis) through 
the angle A2, the longitude of point B as measured from Green- 
wich zero. This final rotation takes the x-axis back to the origi- 
nal X-axis, and therefore the y-axis back to the original Y-axis. 
That is to say, after these seven rotations the rotated coordinate 
frame is back to its original reference frame orientation. 

Figure 4.19: Rotation thru A2 about the z-axis 

Note, here again, that whether the angle A2 is positive or 
negative, the right-hand rule requires that the rotation angle be 
-A2, as shown in the sequence of Figure 4.20. 
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This completes the detailed development of and relationship 
between the seven angles in the closed rotation sequence sum- 
marized Figure 4.20. 

z y x y        x y z 

Figure 4.20: Great Circle Path Rotation Sequence 

We make two useful remarks about this diagram: 
First, we may begin this sequence at any point and still have 

the identity transformation, so long as all of the rotations are 
included in the same order. Thus the sequence of rotations rep- 
resented in Figure 4.21 is also the identity, except that the three 
unknown angles occur first. We notice also that two consecutive 

x y x y z z y 

Figure 4.21: Modified Rotation Sequence 

rotations in this sequence, namely, -A2 and \\, are both about 
the z-axis. This two rotation sequence is, of course, equivalent to 
a single rotation about the same axis through the angle — A2+Ai. 
Thus, we define an auxilliary angle a by 

o = A2 — Ai 

and we replace these two rotations in the sequence with a single 
rotation about the z-axis through the angle -a, as shown in 
Figure 4.22. 
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Recall that the angles we seek to determine are the angles 
V>i, 6, and V>2- Note that these now occur first in the sequence 
and that this sequence is still the identity. 

M N 
T  r 

r000OO€h 
O = X,7-X 2"M 

Figure 4.22: Simplified Rotation Sequence 

The second remark we make about rotation sequences is that 
the entire sequence may be partitioned as shown in Figure 4.22, 
into two non-overlapping segments, each of which is itself a ro- 
tation sequence. Moreover, since the product of these two con- 
tiguous rotation sequences is the identity, it follows that these 
two segments are also inverses of one another. 

We now apply these remarks to the sequence as shown parti- 
tioned in Figure 4.22 into subsequences, M and N. Recall that 
the inverse of a rotation sequence is obtained by reversing the 
order and changing the signs of the angles of rotation. There- 
fore, the inverse of the second segment of the partition is the 
sequence shown in Figure 4.23. 

—GXE>©~~ 

This kind of analysis of closed ro- 
tation sequences, as introduced in 
Section 4.2.3, will prove to be very 
useful in our work 

ö= Xi-Tit 

Figure 4.23: Known Rotation Sequence, N -l 
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It follows that this inverse sequence is now equivalent to 
the first segment of the partition, namely M, as shown in Fig- 
ure 4.24. We next write these rotation sequences using matrix 

—QKt>®~^ 

i  o- X,-X.       "-J 

Great Circle Path 

Figure 4.24: Rotation Sequence of Unknowns, M 

notation. In doing so we recall that for a rotation matrix 

The equivalence of the two sequences, M and TV-1, represented 
in matrix form, gives us the important matrix equation 

M   =   Rx^RyjRj.^    =    RytL2Rz,aRy,Li   —   N~      (4.7) 

If we denote the elements of M by m^ we have 

M     =     Rx^RyftRx^ (4.8) 

ran rai2   rni3 
ra2i T7122    ra23 

m3i «*32    Wl33 

which in more detail is the product of the three matrices, 

1        0 0 
0    cos fa     sin ip2 

0   — sin fa   cos fa 

cos 9    0   sin 9 
0       1      0 

— sin 9   0   cos 9 

10 0 
0   cos ipi   — sin ipi 
0   sin ijji     cos ipi 

In like manner, we write 

(4.9) 

nn «12 «13 

«21 «22 «23 

«31 «32 «33 . 
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which, in more detail, is the product of the three matrices, 

cos L2    0   sin L2 

0 1       0 
— sin L2   0   cos L2 

The matrices M and N~l are equal, which means their cor- 
responding elements, m^ and n^, are equal. When we compute 
the foregoing matrix products, we obtain 

cos cr sin a 0 cosLj 0 — sin Li 
- sin a cos a 0 0 1 0 

0 0 1 sinLi 0 cosLi 

mn   = cosö 
= cos L2 cos a cos L\ + sin L\ sin Li        = nn 

rai2   = sin 9 sin ipi 
= cos L2 sin a = n\i 

rai3   = sin 6 cos ipi 
= cos L\ sin L2 — cos L2 cos a sin Zq       = n^ 

ra2i   = — sin 9 sin ^>2 

= — cos L\ sin a = n2i 
77i22   = cos ^2 cos xpi + sin ^i cos 6 sin V>2 

= cos a = n22 

m23   = cos ^i cos 0 sin ^2 — sin V>i cos ip2 

= sin Li sin a — n23 
"^31   = — sin 9 cos i/>2 

= — sin L2 cos a cos Li + sin L\ cos L2   = «31 
"I32   = — cos ^1 sin t/>2 + sin V>i cos 9 cos ^2 

= — sin L2 sin a = n32 

wi33   = cos ip\ cos 0 cos ^2 + sin ipi sin ^2 

= cos L\ cos L2 + sin L\ cos tr sin L2       = n33 

Finally, from these nine equations we compute expressions which 
determine the desired unknown angles, 9, ipi, and ip2, which 
define the great circle path from point A to point B on the 
earth surface. 
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■  o» X,-\,       "■» 

Great Circle Path 

Equating ran and nn gives an expression from which we can 
compute 6, the radian distance from point A to point B. We 
get 

cos 6 = cos L2 cos a cos L\ + sin Li sin L2 (4.10) 

Dividing the equation m\2 = ni2 by m.13 = 1113 gives an expres- 
sion for the angle tpi, which is the heading at point A. 

tanV'i = 
cos L-2 sin a 

cos L\ sin Z/2 ~ cos L2 cos a sin Li 
(4.11) 

Finally, dividing the equation ra2i = n-n by 77131 = n3i gives an 
expression for the angle ^2, which is the heading of arrival at 
point B. 

tan ^2 = 
cos L\ sin a 

sin Z/2 cos a cos Li — sin L\ cos L2 
(4.12) 

Once again we would have to specify the domain for each of 
these angles in order to get unique solutions for the great circle 
path. 

This completes our analysis of sequences of rotations in R3 

using matrix representation for the rotation operators. At cer- 
tain significant points in this analysis the use of quaternion op- 
erators might be more efficient. So in the next chapter we in- 
troduce quaternions, and later show how this same analysis of 
sequences of rotation operators in R3 can be made from that 
point of view. 



Chapter 5 

Quaternion Algebra 

5.1    Introduction 

As we begin our consideration of quaternions and their algebra, 
we recall the remarks made earlier in our introductory chapter, 
particularly in Sections 1.1 and 1.5. There we recounted just a 
bit of the work done by William Rowan Hamilton in extending 
the notion of complex numbers to that of the quaternion. In this 
context we may think of the real numbers as being hyper-complex 
numbers of rank 1. Recall that these real numbers satisfy the 
field properties under ordinary addition and multiplication. Fur- 
ther, we may think of the ordinary complex numbers as being 
hyper-complex numbers of rank 2, and treat the real numbers 
as a subset of the complex numbers in which the imaginary part 
is zero. The complex numbers also satisfy the field properties, 
as we demonstrated earlier. 

It turns out, however, that any set of hyper-complex num- 
bers having rank greater than rank 2 does not satisfy the field 
properties as enumerated in Section 1.2. It was this fact that 
troubled and impeded those mathematicians who were seeking 
higher rank extensions suggested by the gradual acceptance of 
the complex numbers in R2. 

119 
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Be Careful! 

These are quaternion prod- 
ucts — not dot products nor 
ordinary products. 

In 1843 Hamilton invented the so-called hyper-complex num- 
ber of rank 4, to which he gave the name quaternion. Crucial 
to this invention was his celebrated rule 

i2=j2 = k2 = ijk=-l 

for dealing with the operations on the vector part of the quater- 
nion. And finally, even though the hyper-complex numbers of 
rank 1 through n can be defined, few applications have been 
found for hyper-complex numbers of rank n > 4. But since 
our concern is for graphics applications and for a variety of dy- 
namical applications which involve rotations, we will restrict our 
attention from this point on to the hyper-complex numbers of 
rank 4, namely, quaternions, which as we shall see are particu- 
larly well suited for use as rotation operators. 

The set of quaternions, along with the two operations of ad- 
dition and multiplication, form a mathematical system called 
a ring, more precisely a non-commutative division ring. This 
longer title merely emphasizes the fact that the quaternion prod- 
uct, in general, is not commutative, and also that the multiplica- 
tive inverse exists, as usual, for every non-zero element in the set. 

In summary: The set of quaternions under the operations of 
addition and multiplication satisfy all of the axioms of a field 
except for the commutative law for multiplication. 

5.2    Quaternions Defined 
In what follows, a quaternion will always be denoted by some 
lower-case letter, say p or q or r. Further, we shall continue 
to use bold-faced letters to denote ordinary vectors in three- 
dimensional space, namely R3. In particular we use i, j, and 
k to denote the standard orthonormal basis for R3.   Vectors 
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in three dimensional space may, of course, nicely be written as 
triplets of real numbers (that is, scalars), so that we write this 
orthonormal basis as 

i = (1,0,0) 

j = (0,1,0) 

k   =   (0,0,1) 

Now a quaternion, as the name already suggests, may be 
regarded as a 4-tuple of real numbers, that is, as an element of 
R4. In this case we would write 

9 = (90,91,92,93) 

where 90, 9i, 92, and q$ are simply real numbers or scalars. 

We shall adopt an alternative way of representing a quater- 
nion. First, we define a scalar part to be some real number or 
scalar, say qo. Then we define a vector part, say q, which is an 
ordinary vector in R3 

q = i9i+J92 + kg3 

where i, j, and k are the standard orthonormal basis in i?3. We 
now define a quaternion as the sum 

9  =  9o + q   =   9o + i9i+J92 + k?3 

In this sum, q0 is called the scalar part of the quaternion while q 
is called the vector part of the quaternion. The scalars qo, 91,92,93 
are called the components of the quaternion. 

Defined in this way, a quaternion is a mathematically strange 
object, being the sum of a scalar and a vector, something not 
defined in ordinary linear algebra. We must therefore give fur- 
ther meaning to this definition by showing how quaternions are 
to be added and multiplied. 

Here, finally, is our definition and 
a representation which we adopt 
for the quaternion! 
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5.3 Equality and Addition 

We begin by saying two quaternions are equal if and only if they 
have exactly the same components, this is to say that if 

and 
9 = 9o + i9i+J92 + kg3 

then p = q if and only if 

Po = % 

Pi = Qi 

Pi = Q2 

Pz = 93 

The sum of the two quaternions p and q above is defined by 
adding the corresponding components, that is 

P + Q = (Po + Qo) + i(Pi + 9i) + J(P2 + 92) + k(p3 + 93) 

Addition for quaternions, defined in this way, is exactly the same 
as that for 4-tuples of real numbers, and thus it satisfies the field 
properties, as these apply to addition. For example, notice that 
the sum of two quaternions is again a quaternion, that is, the 
set of quaternions is closed under addition. Also, there is a zero 
quaternion, in which each component of the quaternion is 0. 
Moreover, each quaternion q has a negative or an additive in- 
verse, denoted —q, in which each component is the negative of 
the corresponding component of q. Further, as is easily verified, 
this addition of quaternions is both associative and commuta- 
tive, because addition of real numbers has these properties. 

5.4 Multiplication Defined 

Just as in the case of vectors in R3, the product of a scalar and 
a quaternion is defined in a straight forward manner. If c is a 
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scalar and q is the quaternion 

q = q0 + iqi+m + ^Q3 

then the product of the quaternion q and the scalar c is given 
by 

cq = cq0 + icqi + jcg2 + kcg3 

Thus to multiply the quaternion by the scalar we simply multi- 
ply each component of the quaternion by the scalar. Note that 
the result is again a quaternion, that is, the set of quaternions 
is closed under multiplication by a scalar. For example, if 

q   =   3 + 2i-j + 4k 

then 3q   =   9 + 6i - 3j + 12k 

The product of two quaternions is more complicated. It must 
be defined so that the following fundamental special products are 
satisfied: 

i2=j2 = k2 = ijk=_1 

ij = k = -ji 

jk = i = -kj 

ki = j = -ik 

Recall that these products are those which Hamilton saw as be- 
ing necessary for achieving his goal. Notice also that these prod- 
ucts are not commutative, so that the product of two quater- 
nions will, in general, not be commutative either. Now, by us- 
ing ordinary rules for algebraic multiplication together with the 
above fundamental products, it is easy (though somewhat te- 
dious!) to verify that the product of quaternions must go as 
follows. If 

P = Po + ipi+JP2 + kp3 

Again, Be Careful 

These indicated products of the 
orthonormal basis vectors in R3 

will shortly be defined as quater- 
nion products. Do not confuse 
these products with the familiar 
dot and cross products. 

and 
9 = 9o + igi+J92 + kg3 
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we have 

pq =  (PO + m + JP2 + kp3)(go + ki + ki + kg3) 

=   Poqo + ipiQo + jP2?o + kp3q0 

+ip0qi + i2Piqi + imqi + ikp39i 

+3PoQ2 +jipiQ2 +i2P2Q2 + jkp3?2 
+kp0q3 + kipi93 + kjp2?3 + k2p3g3 

Notice that in this multiplication we have uniformly written 
the scalar on the right of the vector, and we have maintained 
the correct order in the vector products. If Hamilton's special 
products are to hold, we must have 

pq = Poqo + ipoqi + iPoq2 + kp0q3 

+ipiq0 - piqi + \q>iq2 - jpi?3 

+JP290 - kp29l - P2?2 + ip293 

+kp3q0 + mq\ - ip3?2 - PMz 

With some algebraic regrouping of terms, the expression may 
now be written as 

pq = Poqo - (piqi + P&2 + pm) 

+Po(i?i + j?2 + kq3) + 9o(ipi + JP2 + kp3) 

+i(P2?3 - P3?2) + J(P39i - P\qz) + k(pig2 - P29l) 

Before rewriting this expression in a more concise form, it is 
helpful to recall the scalar product and the cross product from 
the algebra of vectors in three dimensions. If we have vectors 

a = (ai,a2,a3) 

and 
b= (61,62,63) 

then the scalar product is given by 

a • b = d\b\ + a\bi + a\bi 
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and the cross product is 

a x b   = 
i j k 

ai Ü2 03 

61 b2 h 

=   i(a263 - a362) 

+j(a3^i - 0163) 

+k(ai62 - a2h) 

Using these results, we may write the above product of the two 
quaternions p = p0 + p and q = q0 + Q in the more concise form 

P?   =   Po9o - p • q + p0q + 90P + P x q (5.1) 

Although other definitions could be used, it is the expression in 
Equation 5.1 that we will use as our working definition for the 
product of two quaternions. 

As an example of the product of two quaternions, suppose 
we take p and q to be 

p = 3 + i-2j + k 

and 
q = 2 - i + 2j + 3k 

In order to calculate the product we note that with p = 3 + p 
and q = 2 + q, then we have p = (1, -2,1) and q = (-1,2,3). 

We calculate 

p-q=(l)(-l) + (-2)(2) + (l)(3) = -2 

and p x q as 

pxq   = 
i      J     k 
1     -2   1 
-12     3 

Here, finally, is our definition of 
the quaternion product! 

Note that in the spectial case 
where the real parts of the quater- 
nions are equal to zero, we get the 
quaternion product of two vectors, 
say, a and b as 

ab = axb-ab 

Note also that applying this ex- 
pression to the standard basis vec- 
tors confirms that Hamilton's spe- 
cial products do indeed hold. 
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Equation 5.1 
Quaternion Product 

pq   =   pogo - p • q + 
Poq + <7oP + P X q 

=   (_6 _ 2)i - (3 - (-l))j + (2 - 2)k 

=   -8i-4j 

According to Equation 5.1, the quaternion product is then given 
by 

pq   =   6 - (-2) + 3(-i + 2j + 3k) + 2(i - 2j + k) + (-8i - 4j) 

=   8-9i-2j + llk 

The product of quaternions, defined in Equation 5.1, may 
be written using the algebra of matrices. If we designate the 
product as the quaternion 

pq = r = r0 + r = r0 + irx + jr2 + kr3 

then we have 

ro = PoQo - PiQi - Pi<lz - Pzqz 

n = PoQi + PiQo + P2Q3 - P3Q2 

?2 = Po?2 - PiQ3 + P2Qo + PzQ\ 

n = PoQ3 +PlQ2- P2Ql + P3Q0 

(5.2) 

or, if written in matrix notation 

" r0 ' 
n __ 
T2 

L ^3 J 

PO ~P\ -P2 -P3 
Pi PO -P3 P2 
P2 P3       PQ -Pi 
P3 -P2 Pi PQ   J 

Qo 
Qi 

Q2 

93 J 

(5.3) 

We may now use this matrix form in order to compute the 
product of the two quaternions in our example above. We have 

' r0 " r 3 -1 2 -11 r 2 
n 1 3 -1 -2 -1 
r2 -2 1 3 -1 2 

. r3 . 1 2 1 3 3 
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8 
-9 
-2 
11 

Hence the product is 

pq = r = 8 - 9i - 2j + Ilk 

as we obtained before. 

We have remarked earlier that so far as addition is con- 
cerned, quaternions satisfy the field properties. Further, we 
have claimed that the set of quaternions is a non-commutative 
division ring, which means that all of the field properties are 
satisfied, except that multiplication is not commutative. To see 
that this is so we need to make a few more comments about the 
quaternion product. 

Notice first that the product of two quaternions is another 
quaternion, with scalar part 

and vector part 

Po9o-P.-q 

PoQ + M> + P x q 

Thus the set of quaternions is closed under multiplication as well 
as under addition. 

Next we remark that the quaternion product is indeed asso- 
ciative. It is not difficult to verify that this is so, but the details 
are tedious, and some knowledge of the algebraic manipulation 
of vectors is required. 

Moreover, since the cross product p x q is not commutative, 
neither is the quaternion product. And, for quaternion algebra, 
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this is the only departure from the field properties. 

We must, however, have an identity for quaternion multipli- 
cation, as well as for addition.  The set of quaternions indeed 

Equation 5.1 does have such a multiplicative identity, namely, that quater- 
Quaternion Product nion with real part 1 and vector part 0.  This follows directly 

from Equation 5.1 with 
pq   =   Potfo-p-q 

+ Poq g = 1 + 0 

+ 9oP 
+ pxq It is not difficult to verify that multiplication of quaternions is 

also distributive over addition, as required. 

Finally we remark that every non-zero quaternion does have 
a multiplicative inverse, as we show in the next three sections. 
This final remark completes our justification that the set of 
quaternions indeed is a non-commutative division ring. 

5.5    The Complex Conjugate 

An important algebraic concept relating to quaternions, as well 
as to ordinary complex numbers, will be useful to us in what 
follows, namely, that of the complex conjugate of a quaternion. 
We define the complex conjugate of the quaternion 

q = 9o + q = 9o + igi+J92 + kg3 

to be the quaternion, denoted q*, given by 

q* = qo - q = qo - ki - j?2 - kg3 

As an example in the use of the quaternion product, defined in 
Equation 5.1, it is not difficult (although somewhat tedious) to 
show that for any two quaternions, the complex conjugate of 
the product of the quaternions is equal to the product of the 
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individual complex conjugates, in reverse order. That is, given 
any two quaternions p and q we have 

(PQY = ffV 

Note also that for any quaternion q, the sum of q and its complex 
conjugate q* is a scalar, for we have 

q + q* = (9o + q) + (9o - q) = 290 

where 2q0 is the scalar. This is also true for the product of a 
quaternion q and its complex conjugate q* as we show in the 
next section. 

5.6    The Norm 

Another important algebraic concept relating to quaternions is 
the norm of a quaternion. The norm of a quaternion q, denoted 
by N(q) or \q\, sometimes called the length of q, is the scalar 
defined by 

N(q)  =  Vfq 
Using our definition of the quaternion product, together with the 
fact that for any vector q we have q x q = 0, we may calculate 

N2{q)   =   (9o-q)(9o + q) 
= qoqo - (-q) • q + ?oq + (-q)go + (-q) x q 

= 9o + qq 
=   ql + Qi+Qt + ll Ms 

As a simple example, if 

q = 2-i + 2j + 3k 

then our definition of the norm of q gives 

N2(q)  = 22 + (-l)2 + 22 + 32  =  18 N(q)  =  y/lS 

It is important to note that for any 
quaternion g we have 

q'q  =  99*   =   Ifll2 

as is clear from what follows. 
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Notice that this definition is the same as that for the length of a 
vector in R4, or for that matter it has the same meaning as any 
Euclidean Norm. In what follows we shall, for the most part, be 
working with quaternions with norm 1. 

Note further that if a quaternion has norm 1 each of its com- 
ponents must have absolute value less than or equal to 1. Such 
quaternions are called unit or normalized quaternions. 

Finally, it is relatively easy to show that the norm of the 
product of two quaternions p and q is the product of the indi- 
vidual norms. For we have 

N2{pq)   =    (pq)(pq)* 

= PQQ*P* 
= pN\q)p* 

= PP*N'(q) 

= N2(p)N*(q) 

It follows, of course, that the product of two unit quaternions 
is again a unit quaternion, a fact that will be important for us 
later on. We mention also that by mathematical induction the 
result extends to any product of finitely many quaternions. 

5.7    Inverse of the Quaternion 

Using the ideas of the complex conjugate and the norm of a 
quaternion, we are now able to show that every non-zero quater- 
nion does have a multiplicative inverse, and we can develop a 
formula for it. If we designate the inverse q~x we must, by defi- 
nition of inverse, have 

q~lq  =  qq-1   =   1 
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Now, if we use both pre- and post-multiplication by the complex 
conjugate q* we may write 

q lqq*  =  q*qq 1 

Since qq*  = N2(q) we get 

Q N*(q) M2 (5.4) 

We note here that if q is a unit or normalized quaternion, that 
is, N(q) = 1, then the inverse is simply the complex conjugate 

q-1   =  Q* 

We remark incidentally that this result is analogous to the in- 
verse of a rotation matrix, where A'1 = A1. 

This completes our preliminary analysis of the quaternion 
sum and product. We have not mentioned, however, any sort of 
geometric interpretation of a quaternion, and we turn to that in 
the next section. 

Since the quaternion product is 
non-commutative, we must always 
be mindful of the order of the 
factors in multiplication. Notice, 
however, that q always commutes 
with q*. 

5.8    Geometric Interpretations 

We recall that in Section 3.4 we showed that a rotation in Rz 

may be represented by a 3 x 3 matrix, provided that the matrix 
is orthogonal and has determinant +1. Or, alternatively, any 
such matrix A may be interpreted geometrically as a rotation 
operator in R3. In order to find the vector w which is the image 
of a vector v under such a rotation, we simply represented the 
vector v by a column matrix whose entries are the components 
of v, and multiplied it on the left by the rotation matrix. Thus, 
in matrix form, the rotation is given by the equation 

w = Av 
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We also showed that the product of a sequence of rotation opera- 
tors was again a rotation operator, and we developed algorithms 
for finding the axis and the angle of that composite rotation. 

It is well known that quaternions play an important role in 
an alternative form for a rotation operator, a role that is quite 
different from the role played by our now familiar matrix ro- 
tation operator. Further, quaternions may be very efficient for 
analyzing certain situations which involve rotations in R3. After 
all, a quaternion is a 4-tuple while a rotation matrix has nine ele- 
ments. We must admit, however, that it is not at all clear at this 
point how a quaternion rotation operator can be defined, and 
so we must spend some time and effort in exploring and under- 
standing just how this might go. In so doing, we hope to arrive 
at a definition for a quaternion operator, and we will then verify 
that this operator can be interpreted geometrically as a rotation 
in R3. We will find that it is relatively easy to specify the axis 
and the angle of the rotation which this operator represents. We 
begin by investigating these matters from the point of view of 
quaternion algebra which we developed in the preceding section. 

5.8.1    Algebraic Considerations 

Our ultimate concern at this point is with developing mathe- 
matical methods for determining the orientation of an object in 
3-space, that is, in R3. An object in R3 may be regarded as a set 
of points in R3. We may easily identify these points as vectors 
in R3, so that the orientation of the object may be studied by 
performing appropriate operations on these vectors. If we are to 
accomplish this goal by means of an operator defined in terms 
of quaternions, it seems reasonable to begin by asking the very 
important question: 

How can a quaternion, which lives in R4, operate on 
a vector, which lives in R3 ? 
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There is an answer to this question, which may seem obvious to 
some, and that is: 

A vector v G R3 can simply be treated as though it 
were a quaternion q €. R4 whose real part is zero. 

Such a quaternion is called a pure quaternion. Let us consider 
this possibility by looking at, say Q0, the set of all pure quater- 
nions, which is a subset of Q, the set of all quaternions. Perhaps 
it is possible simply to identify vectors in R3 with the elements 
of this set QQ. At the very least, perhaps we may define a one- 

From this point on we will always 
(at least, implicitly) identify a vec- 
tor v with its corresponding pure 
quaternion v = 0 + v. 

Figure 5.1: Correspondence: Vectors «-► Quaternions 

to-one correspondence between these two sets, a correspondence 
in which a vector veJJ3 corresponds to the pure quaternion 
v = 0 + v e Qo, that is 

veR3<-+v = 0 + veQ0cQ 

as shown in Figure 5.1. It is easy to verify that with respect 
to addition and multiplication by a scalar, this correspondence 
is quite plausible. For example, the sum of any two vectors in 
R3 corresponds to the sum of each of their corresponding pure 
quaternions in Q0. 

In algebraic terms, with respect 
to addition, this one-to-one corre- 
spondence may be called an iso- 
morphism. 
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Now, at this point it may seem reasonable to suppose that 
a rotation operator which is defined in terms of quaternions has 
the same form as the familiar matrix rotation operator. If so, 
this would mean that a quaternion q G Q somehow represents a 
rotation, and that we may find the image w e R3 of some vector 
v e R3 by using the simple product rule 

w = qv 

Such a rule, of course, would mean that the product of a quater- 
nion q with a vector v must not only always be defined, but the 
result must always be a vector. It is quite possible, using the 
one-to-one correspondence between R3 and Qo described above, 
to define the product of a quaternion with a vector. In the 

Equation 5.1 quaternion product of Equation 5.1, in place of a vector v we 
Quaternion Product simply use its corresponding quaternion v = 0 + v. Thus, given 

some quaternon q = <?o + q £ Q and a vector v G R3 we compute 
pq   =   Poqo - P • q 

+ PoQ qv   =   (g0 + q)(0 + v) 

+ 9oP =9o-0-q-v + 0-q + q0v + qxv 

+ PX<1 =   -q . v + q0v + q x v 

This computation shows that the result is not necessarily in Q0- 
That is, in general, the result does not correspond to a vector 
in R3, except in the special case that q • v = 0, which means q 
and v are orthogonal. Thus we cannot expect our quaternion 
rotation operator to consist simply of a single quaternion. 

Never-the-less, in spite of this difficulty with the quaternion 
product, in what follows we will not abandon the necessary one- 
to-one correspondence between vectors and pure quaternions 
which we have just introduced. Prom this point on we must 
understand that when we use vector notation in a quaternion 
product the vector is implicitly represented by its correspond- 
ing pure quaternion. In this way quaternion products involving 
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vectors will make sense. 

Since, as we have just shown, the simple product qv does 
not work, it is clear that the product vq will not work either, 
since commuting the factors does not change the real part of this 
product. This observation leads us to suppose that the desired 
operator may involve triple or perhaps even higher order prod- 
ucts. It may then be possible to insure that the output of the 
operator will be a vector whenever the input is a vector. Since 
we wish to operate on vectors using quaternions we will let one 
of the factors, say p (in a triple quaternion product), be a pure 
quaternion, representing the vector in question. 

When a vector appears in a 
quaternion product it must be re- 
garded as the corresponding pure 
quaternion. 

So we next suppose that we have two general quaternions, 
say q and r, from the set Q, and a third quaternion, say p, 
which is a pure quaternion from the set Q0, representing some 
vector. There are six possible products involving these three 
quaternions, and for convenience we list them here 

pqr 
prq 

qrp 
rqp 

rpq 
qpr 

Now, one of the algebraic properties of quaternions is that the 
set Q is closed under multiplication (although the set Q0 is not). 
Thus, the products qr and rq in the first two columns in the 
above list are simply quaternions, and this means that these 
four products in this list are essentially double products. We 
have just seen that such products are not adequate for defining 
the operator we seek, and so we discard them as possibilities. 

Further, although we insist that p must be a pure quaternion 
(thus representing a vector), we make no distinction between the 
quaternions q and r, so that the remaining two products in the 
above list need not be distinguished. Hence our last hope is the 
single triple product qpr. 
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If we let q = qo+q, p = 0+p, and r = r0+r, it is not difficult 
to verify (though the details are a bit tedious) that according to 

Equation 5.1 our quaternion product rule of Equation 5.1 the real part of this 
Quaternion Product triple product is given by 

pq   =   Po<Zo-p-q -r0(q • p) - *>(P • r) - (q x p) • r 

+ Poq Using rules of vector algebra, we may rewrite this real part in 
+ 9oP the form 
+ p x q -r0(q ■ p) - Qo(r • p) + (q x r) • p 

We recall that our operator must be such that the output is 
a pure quaternion (that is, representing a vector) whenever the 
input is, and so we must require that this real part be zero. How 
can this be accomplished? 

Well, just suppose that we had r0 = qo- This real part may 
then be rewritten in the form 

-9o(q + r) • p + (q x r) • p 

Clearly this real part will be zero, as required, if r = -q. But 
this would mean simply that 

r = r0 + r = q0 - q = q* 

or, equivalently 
q = r* 

Prom this discussion we obtain two triple quaternion products, 
namely 

qpq* and q*pq 

Both of these triple products produce a pure quaternion when- 
ever the factor p is a pure quaternion. In terms of a given input 
vector v we then have two possible triple-product quaternion 
operators, defined by 

Wi   =   qvq* (5.5) 

and w2   =   q*vq (5.6) 
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The algebraic action of Equation 5.5 is illustrated in Figure 5.2. 
In summary, to this point we have found a way to handle vectors 

v = 0 + v 
/^ \ : 1      " >^1^1 

v              \     / 
/    v» "i 

1         Pure 
3      If Vectors in R      II 

1 Quaternions Q. 
\      w        > 

<a**^s   \ ̂    Quaternions 

w = qvq* 

Figure 5.2: Quaternion Operations on Vectors 

in quaternion space, and we have found two quaternion opera- 
tors which take vectors into vectors. So, now we ask 

What geometric interpretation can we give these op- 
erators? 

5.8.2    Geometric Considerations 

The quest for geometric interpretations for the triple quaternion 
products in Equations 5.5 and 5.6, leads us to ask the next 
question: 

Is there some way to associate an angle with a quater- 
nion, analogous to the way we earlier associated an 
angle with a rotation matrix? 

If so, perhaps we can also associate an angle with the above two 
quaternion operators. The answer to our question is Yes, and 
in our consideration we discover an interesting and helpful fact. 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 
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From this point on, the quaternion q used to define the op- 
erator will always be a unit or normalized quaternion, that is, a 
quaternion with norm 1. The reason for this will become appar- 
ent shortly. Recall that if the quaternion 

q = go + q 

indeed has norm 1 then 

4 + |q|2 = 1 

However, since for any angle 6 we know that 

cos2 0 + sin2 0 = 1 

there must be some angle 0 such that 

cos2 0 = ql 

and 
sin20=|q|2 

This angle 9 can be defined uniquely if we place the proper 
restriction on its domain. In general, we will ask that 0 satisfy 
the restriction 

-7T < 0 < 7T 

In this way we have an angle, namely the angle 6 defined above, 
associated with the quaternion q. We will find it convenient 
to write the unit quaternion q = q0 + q in terms of this angle. 
Suppose we define a unit vector u, which represents the direction 
of q by writing 

„ = -SL = _SL 
|q|      sin# 
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Then we may write the unit quaternion q in terms of the 
angle 9 and the unit vector u as 

q   =   9o + q = COS0 + usin# (5.7) 

Note, that for a quaternion expressed in this form, substituting 
-6 for 6 (whatever geometric meaning the angle 9 might have) 
we get the complex conjugate of q. That is, 

cos(-0) + usin(-0)   =   cos0 + u(-sin0) 

=   cos 9 — u sin 6    =     q* 

Next, using this form for the quaternion, q, we develop an inter- 
esting (though somewhat restricted) geometric property of the 
quaternion product — one which may strengthen our impression 
that quaternions are somehow related to rotations in R3. 

5.9    A Special Quaternion Product 

Suppose we have two unit quaternions, say p and q, with both 
having the same vector, u. We associate an angle a with the 
quaternion p and an angle ß with the quaternion q. Then we 
may write 

p   =   cos a + u sin a 

and   q   =   cos ß + u sin ß 

The quaternion product rule in Equation 5.1 gives 

r — pq   =   (cos a + u sin a) (cos ß + u sin ß) 

=   cos a cos ß — (u sin a) • (u sin ß) 

+ cos a(u sin ß) + cos ß(u sin a) 

+ usina x usin/? 

=   cos a cos ß — sin a sin ß 

+ u(sin a cos ß + cos a sin ß) 

=   cos(a + ß) + u sin(a + ß) 

=   cos 7 + u sin 7 = r 

Equation 5.1 
Quaternion Product 

pq   =   P090-P-Q 

+ poq 
+ 9oP 

+ pxq 



140 CHAPTER 5.   QUATERNION ALGEBRA 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 

This is an interesting result! 

It says, if we multiply the quaternions, p and q, each having 
the same vector, u, then the product is a quaternion 

r = cos 7 + u sin 7 

also having this same vector, u. And, associated with the prod- 
uct of these two quaternions is the angle 7 = a + ß, which is 
the sum of the angles associated with each of the factors. Now 
if, in fact, quaternions somehow do represent rotations, this is 
exactly what we would expect. Moreover, the reappeance of 
the vector u in this product quaternion, r, suggests that it also 
may somehow be involved in the operator action on the vector v. 

We now take a closer look at the two quaternion operators 
defined by Equations 5.5 and 5.6. First, it is important to note 
that the norm of the products of quaternions which appear in 
these operators is equal to the product of the individual norms. 
This implies that the quaternion operator of Equation 5.5, for 
example, does not change the length of the vector to which it is 
applied. For, if 

w = qvq* 

we have, since q is a unit quaternion 

jV(w)   = N(qvq*) 

= N(q)N(v)N(q*) 

= 1-N(v)-1 

= N(v) (5.8) 

It should go without saying that this same result holds, of course, 
for the operator w = q*vq. 

This result concerning the norm of a vector under the action 
of the quaternion operator is consistent with the possibility that 
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we are dealing with a rotation operator - 
in R3 does not change under a rotation. 

the length of a vector 

Next we observe that, if in the quaternion 

q = cos 9 + u sin 9 

we replace the angle 9 with the angle -9, we obtain the quater- 
nion 

q* = cos 9 — u sin 9 

This in turn means that, if in one of the operators of Equa- 
tion 5.5 and 5.6 we replace 9 by -9, we get the other operator. 
Hence, by the appropriate choice of the angle 9 these operators 
may in fact represent the same geometric transformation. 

At this point we have considerable evidence that the quater- 
nion operators of Equations 5.5 and 5.6 are in some way related 
to rotations in R3. We still need to investigate in more detail, 
however, just what geometric effect these operators have when 
applied to an arbitrary vector in R3. 

5.10    An Incremental Test Quaternion 

In order to gain more understanding of what this geometric effect 
is, we look at an incremental test case. First, suppose that the 
quaternion q in the operator of Equation 5.5 has vector 

u = 0i + 0j + lk = k 

where {i,j,k} are the standard basis vectors in R3. And sup- 
pose further that the angle associated with this quaternion q is 
a very small positive angle, say 9. We choose a very small angle 
merely to gain some insight into how this incremental quater- 
nion operator "tweaks" the input vector. 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 
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For any arbitrary angle 9, the quaternion q may, of course, 
be written in the form 

q = cos 9 + k sin 9 

However, it is well known that for very small values of the angle 
9 we may write 

COS0 

and    sin 9 

1 

9 

and then the quaternion q may be written as 

q »  1 + kö 

Obviously, if 9 = 0 then the quaternion q is the identity. We now 
use this incremental quaternion in the operator qvq* in order to 
determine its action on, say, the basis vector i in R3. Actually, 
of course, as we have agreed earlier, we apply the operator to 
the pure quaternion which corresponds to this vector, i. In the 
following computation we ignore the 92 terms; for our purposes 
these terms are negligible since 9 itself is taken to be very small. 
We then have 

It is worth verifying that the de- 
tails of this computation are cor- 
rect, since several steps have been 
omitted here. 

W   = q\q 

= (l+k0)(O + i)(l-k0) 

= (l + k0)(O + i+j0) 

= O + i + 20j 

This result is a pure quaternion, as we knew had to be the 
case. We interpret this result to mean that the input vector i 
has been "tweaked" by the quaternion operator qiq* to produce 
the output vector 

w = i + 20j 

Notice that the length of this vector, given that we ignore the 
92 term, is 1.   Now, we let the angle between the input and 
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output vectors be a. Geometrically, it should be cleax, from 
the components of w, that tan a = 20. Since, for small angles 
tana «awe can write a = 26. Clearly, w lies in the second 
quadrant of the XY-plane in R3. Prom this we may rightly 
conclude that the vector i seems to have been rotated counter- 
clockwise through an angle 29, about the vector k as an axis. 
Alternatively, we might also conclude, however, that the frame 
was rotated clockwise through an angle — 26. 

It is interesting to note and not difficult to check that if we 
apply the quaternion operator of Equation 5.6 to the vector i, 
using the same quaternion q, we obtain 

w i-20j 

Comparing this with the previous result leads us to think that 
the difference between the two operators of Equations 5.5 and 
5.6 is simply the direction of rotation. We must be somewhat 
careful here, however. Earlier we mentioned that we would re- 
strict the angle 6 to the domain -7r < 6 < IT. This restriction 
allows the angle 6 to be negative as well as positive, which in 
turn means it is difficult to distinguish between these operators. 

An argument for the very close relationship between the two 
quaternion operators goes like this. If in these equations we let 

Equation 5.5 

w = qxq* 

Equation 5.6 
w = q*vq 

q=p then, of course, Q  =P 

and we may write, 

Wi 

and  w2 

qvq 

q*vq 

p vp 

pvp* 

This says that the action these two operators have on the vector 
v is identical if, in one of the operator equations we use the com- 
plex conjugate of q, that is, q* instead of q. It is quite obvious 
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FVom this point on, we shall not 
make very strong distinctions be- 
tween rotations of vectors and ro- 
tations of the coordinate frame. In 
general, the choice depends upon 
the perspective of the observer — 
the seat of the observer is either 
on the frame or on the vector. 

that this should be the case because, if in one of these operators 
we use q* instead of q we get the other operator equation. 

In spite of these quaternion operators being very similar in 
nature, there are good reasons for making distinctions between 
them, as we shall see. In fact, which of these two operators is 
appropriate, in a given application, usually depends upon the 
perspective adopted by the observer, as he or she formulates a 
mathematical model appropriate to the application. We empha- 
size that we do not yet know the precise geometric meaning of 
the angle, 9, and the vector, u, in the expression 

q = cos 6 + u sin 0 

Nor, for that matter, do we totally understand the action these 
quaternion operators and their parameters produce on the vec- 
tor, v. We will, however, investigate these matters in consider- 
able depth in what follows. The next example will lead the way. 

Equation 5.5 

w — qvq* 

5.11    Quaternion with Angle 6 = TT/6 

In this example we will associate the angle 7r/6 with the quater- 
nion q, while retaining the basis vector k as the vector of q. 
Then we write the quaternion q in the form 

g = cos0 + ksin0 = \/3/2 + 1/2 k 

We apply the quaternion operator of Equation 5.5 to the basis 
vector v = li + Oj + Ok. Again, it is not difficult to verify that 
the following computations are correct. We have 

w qvq 

=   (V3/2 + l/2k)(0 + i)(V3/2-l/2k) 

=   (>/3/2i + l/2j)(>/3/2-l/2k) 

1 . ,  \/3 . 
=   21 + 1"J 
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The result is again a pure quaternion, as should be the case. The 
angle associated with this quaternion is 7r/3 because cos(7r/3) = 
1/2 and sin(7r/3) = \/3/2. The vector in R3 which corresponds 
to this pure quaternion is 

1 . ,  \/3 . 
W=2, + 1"J 

Notice again, that w is a unit vector, that the angle between 
w and i is 7r/3 (which is twice 7r/6), and that the vector w lies 
in the second quadrant. We ask 

Geometrically, how are we to view the vector-frame 
action of the quaternion operator, qvq* ? 

In answering this question, an important consideration is how 
one views the resultant final relationship between the input vec- 
tor v, the output vector w and the coordinate frame with stan- 
dard orthonormal basis {i,j,k}. The answer is conditional; one 
may adopt either of the following two distinctly different per- 
spectives. 

First Perspective 

The first perspective is that of an observer seated on and fixed 
with respect to the coordinate frame {i, j, k}. To her it appears 
that the quaternion operator, qvq*, has rotated the vector v, 
about k as an axis, through an angle, +7r/3, that is, in the 
counter-clockwise direction. From this perspective it is conve- 
nient to think of the coordinate frame as being fixed, while the 
vector is rotated. This is sometimes called a point rotation. 

Second Perspective 

The second perspective is that of an observer seated on and 
fixed with respect to the vector v.   To him it appears that 
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this same quaternion operator, qvq*, has rotated the coordinate 
frame {i, j, k}, about k as an axis, through an angle, -n/3, that 
is, in the clockwise direction. Prom this second perspective we 
think of the vector v as being fixed, while the coordinate frame 
is rotated. This is sometimes called a frame rotation. 

Choice of Perspective 

Which of these two perspectives is to be preferred in a given 
application is usually a subjective matter — a decision made by 
the practitioner. In many of the applications which we consider 
in later chapters, we will use the operator q*vq, and interpret it 
geometrically to be a frame rotation. Incidentally, note that the 
signs of the angles in these two perspectives are reversed if the 
operator is q*vq. 

A Remark 

If the above computations are carried out using a general angle 
6 while still using the vector k as axis and applying the operator 
to the vector i, then we get the expected result, which is 

w = i cos 29 + j sin 29 

This result confirms once again that the operator qvq* seems 
indeed to be a rotation operator in #3, where the angle of ro- 
tation is twice the angle associated with the quaternion used to 
define the rotation operator. 

5.12    Operator Algorithm 

_ It will be useful, for future reference, to have a general formula 
w ~ 9 9 for the output vector when the quaternion operator of Equa- 

tion 5.5 is applied to an input vector v 6 R3.  If we have the 
quaternion q = q0 + q and the vector v, corresponding to the 
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pure quaternion v = 0 + v, it is not difficult to verify that the 
following result is correct. 

w = qvq 

or w = qvq    = 

(go + q)(0 + v)(9o 

(2gg - l)v 

+ 2(q • v)q 

+ 2g0(q x v) 

(?o2 - IQI
2
)V 

+ 2(q • v)q 

+ 2g0(q x v) 

q) 

(5.9) 

In this verification, it is helpful to 
remember that for vectors a, b, 
and c in R3, for the triple vector 
product we have the formula 

a x (b x c) = (a • c)b - (a • b)c 

5.13    Operator action on v = kq 

Intuitively, it is clear that any vector which lies on the axis of 
rotation must be invariant. In this example we verify that the 
quaternion operator of Equation 5.5 when applied to a vector 
v = fcq, that is, having the same direction as the vector compo- 
nent of q, leaves that vector unchanged. This is not difficult to 
verify, for Equation 5.9 says 

Equation 5.5 

w = qvq* 

w   = qvq 

= Q{kq)q* 
= (29o

2 - l)(fcq) 

+2(q • fcq)q + 2q0(q x fcq) 

= fc^q-fc|q|2q + 2fc|q|2q 

= %2 + M2)q 
= kq (5.10) 

In this example we learn that the vector component of q, used 
in the operator qvq*, seems to define the axis of rotation. 
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5.14    Quaternions to Matrices 

The three terms in Equation 5.9 are now expanded to produce 
an algorithm which is often more convenient in applications. 

(2<70
2-l)v   = 

2(vq)q   = 

2?o(qxv)   = 

(2<?o2-l) 0 
0 (2gg - 1) 

0 

2qxq2   2q1q3 

0 

2q\ 
2qxq2     2q\     2q2q3 

2<7i93   2q2q3    2q\ 

0 

2?o93 
-2go?2 

0 ' ^1  " 

0 V2 

M -1) J . v3 . 

Vl 

V2 

. V* . 

-2q0q3 2qoq2 ' «i ' 

0 -2?o9i v2 

2q0qi 0 . V3 . 

The sum of these three components may be written 

Wl 

w2 

w3 

H -1 
+2ql 

2qxq2 

+2qQq3 

2qiq3 

-2qoq2 

2q\q2 

-2go?3 

H -1 
+2ql 

2<?2?3 

+2q0qi 

2qiq3 

+2qoq2 

2?293 
-2q0qi 

2ql - 1 
+2q2

3 

Vl 

v2 

V3 

w   =   qvq*     =     Qv (5.11) 

In passing, we remark that a similar result is obtained for the 
quaternion operator of Equation 5.6 

=     q*wq   =    {2ql-\)v 

+ 2(v • q)q 

+ 2q0(v x q) 

w 

w =     9*vg   =   Q'v (5.12) 
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Note that Equations 5.11 and 5.12 represent the two quater- 
nion operator Equations 5.5 and 5.6 expressed in terms of the 
matrices, Q and Q\ respectively. That is, in summary we have 

qvq*   =   Qv 

q*vq   =   Q'v 

where 9o + ki + J92 + k93 

and       Q   = 

+29? 
29i 92 

-29o93 

29i93 
+29092 

29i92 
+29o93 

2gg-l 

+292 

29293 

-29o9i 

29i93 
-29o92 

29293 

+29o9i 
29o2 - 1 
+293

2 

These algorithms offer further support that the two quaternion 
operators are indeed rotation operators. Their matrix represen- 
tations, that is, a matrix and its transpose is exactly what we 
would expect. We emphasize at this point, however, that our 
geometric interpretation of the preceding results are conjectural 
and we must, of course, prove that this interpretation is correct. 
This we do in the next section. 

5.15    Quaternion Rotation Operator 

In the preceding pages we have given considerable motivation 
for thinking that the triple quaternion products of Equations 5.5 
and 5.6 may be interpreted as quaternion rotation operators. In 
order to apply these operators to a vector in R3 we indicated that 
it is necessary to identify the vector v with the pure quaternion 
v = 0+v. With this understanding, we now use Equation 5.5 to 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 
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define the quaternion rotation operator, Lq (associated with the 
quaternion q and applied to a vector v G R3) by the equation 

w = Lg(v) = qvq* (5.13) 

Alternative Operator 
We could just as well have used 
Equation 5.6 to define the opera- 
tor Lq' by writing 

w    =    Lq- (v) 

=    9*vg 

=    (<Jo-q)(0 + v)(go + q) 
=     (2gg - l)v 

+2(v • q)q 
+2g0(v x q) 

For now, however, we use only the 
operator of Equation 5.13. 

Equation 5.9 then gives us the convenient computational for- 
mula 

Lq(v)   = (?o2 - |q|2)v 
+ 2(q-v)q 

+ 2q0(q x v) 

(5.14) 

In this section we take note of two algebraic properties of the 
operator Lq, defined by Equation 5.13. We also prove that this 
operator does in fact represent a rotation in R3, that the axis of 
rotation is given by the vector part of q, and that the angle of 
rotation is twice the angle associated with the quaternion q. 

5.15.1    Lq(v) = qvq* is a Linear Operator 

The first algebraic property of our quaternion operator is that 
it is linear. This means that for any two vectors a and b in R3 

and for any scalar (real number) k we have 

Lq{ka + b) = kLq(a) + Lq(b) (5.15) 

For, using the distributive property on the quaternion product 
which defines this operator, we may write 

Lq(ka + b)   = q(ka + b)q* 

= (kqa. + qb)q* 

— kqaq* + qbq* 

= kLq(a) + Lq(b) QED 
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5.15.2 Operator Norm 

The second algebraic property is that the norm or length of 
a vector is invariant under the quaternion operator of Equa- 
tion 5.13, that is |Z/g(v)| = |v|, as we have already shown in 
Equation 5.8. This property will be necessary, of course, if the 
operator is to describe a rotation. 

5.15.3 Prove: Operator is a Rotation 

We are finally ready to apply the foregoing results to construct 
a proof of the theorem (stated later) that the operator defined 
by Equation 5.13 indeed is the quaternion rotation operator we 
want. 

STRATEGY for the Proof 

Our argument will proceed as follows: 

We begin with a quaternion q whose vector part is q. Then, 
given a vector v G R3, we resolve v into two orthogonal compo- 
nents: the component a along the vector q and the component 
n normal to q. Then we will show that under the quaternion 
rotation operator qvq* of Equation 5.13, the first component a 
is invariant, while the second component n is rotated about q 
through an angle 20, where 9 is the angle associated with the 
quaternion q. Since the operator is linear, and since the vector 
v is the sum of these two components, this shows that the oper- 
ator qvq* indeed may be interpreted as a rotation in R3 through 
an angle 29 about q as its axis. 

First, we recall that for any unit or normalized quaternion 
q, that is, \q\ = 1, we may write 

Q = Qo + Q = cos 0 + u sin 9 

for some angle 9. Here u = q/|q| is the unit vector. 

Equation 5.13 
Quaternion Operator 

w = Lq{\)  = qvq* 

Remember, whenever a quater- 
nion is written as a unit of the 
form 

q = COS0 + usinfl 

then the vector u is a unit vector, 
that is, |u| = 1. 
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RESOLVE the Components of the Input Vector 

We now write the vector v in the form 

v = a + n 

where, as defined above, a is the component of v along the vec- 
tor part of the quaternion q, and n is the component of v normal 
to the vector part of q. 

INVARIANT Component 

Since the vector a lies along the vector q, a is simply some scalar 
multiple of q, that is 

a = fcq 

for some scalar k. If we invoke the results of Section 5.13 then 
we may write 

L,(a)  = Lq(kci)  = fcq = a 

as required. 

ROTATED Component 

Our proof will be complete if we now show that the operator 
Equation 5.14 Lq rotates the component n through an angle 20 about q as the 

axis. Using Equation 5.14, with v replaced by n, we may write 

?2 _ |q|2)v Lq(n)   = (ql - |q|2)n 

+ 2(q-v)q +2(q-n)q + 2g0(qxn) 

+ 25o(qxv) = (?o2 - IqlV + 29o(q x n) 
= fo»-|q|2)n + 2<fo|q|(uxn) 

Here we used the fact that u = q/|q|. If we let u x n = ni we 
may write this last equation as 

Lq(n)   =   (go
2-|q|2)n + 2ft|q|nL (5.16) 

L„(v)   =   (<7o2-|q|2)v 
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ROTATION Verified 

We now show that the vectors n and ni have exactly the same 
length. First, we observe that the angle between n and nj. is 
7r/2, and since sin 7r/2 = 1 we can write 

|nx|  =.|nxu|   =   |n||u|sin7r/2 =  |n|        (5.17) 

Finally, using the trigonometric form for the quaternion q we 
may write Equation 5.16 in the form 

Figure 5.3: Rotated Vector Components 

L,(n)   =   (cos2 6 - sin2 0)n 

+(2cos0sin0)n_L 

=   cos 20n + sin 20n_L 

The components of Lq(n) are illustrated in Figure 5.3. 
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|m| = |n| = |nx| 

Proof: 
JV2(m) = m • m =  |m|2 

= (cos20n + sin20nx)- 
(cos20n + sin20nx) 
cos2 20n • n + 

sin2 20nx ■ nx + 
cos 20 sin 20nx ■ n + 
sin 20 cos 20n ■ nx 

= (cos2 20 + sin2 20)|n|2 

= |n|2  =  |nx|2 

Therefore, 
|m| = |n|    =    |nx| 

To this point we have shown that 

w     =     qvq*   = Lq(v)     =     L,(a + n) 
= L,(a) + L,(n) 
= a + m 

where   m    =    Lq(n)   = cos 29n + sin 20nx 

SUMMARY of Proof that qvq* is a Rotation 

Using Equation 5.17 we get |m| = |n| = |nj_|. Then it is clear 
that m is a rotation of n through 29, as shown in Figures 5.3 

qj i 

^^^---~~^~^~^ * 

a 

v = a+n 
w = q vq* 
w = a+m 

v / 

m 

w 

Figure 5.4: Rotation Operator Geometry 

and 5.4. Since w = a + m, it is likewise clear, w = qvq* may 
be viewed as the vector v rotated through 29 about q as an axis. 
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Thus we have completed the proof of the following theorem. 

Theorem 5.1:       For any unit quaternion 

q  = qQ + q = cos 9 + u sin 9 

and for any vector vGi?3 the action of the operator 

Lq(v)  =  qvq* 

on v may be interpreted geometrically as a rotation 
of the vector v through an angle 29 about q as the 
axis of rotation. 

Note, in Figure 5.4, that the vector v and and its image w may 
be viewed as generators of the right-circular cone whose axis is 
the quaternion vector q and whose circular base in this instance 
contains the vectors, n and m. Thus, the vector v and its image 
w are related by the rotation described in the above theorem. 

The various vectors in Figure 5.4 implicitly suggest the exis- 
tence of some reference coordinate frame. From afar, God sees 
the frame within which all of this is happening. But we local 
creatures, are a much too loosely coupled part of it all. As an 
observer we must more closely relate to the fixed axis of rotation, 
the generators v and w, the fixed point, and/or the frame. 

So, the observer somehow finds a seat fixed in this implicit 
frame. What she sees happening, under the action of the ro- 
tation operator qvq*, is that the vector v goes to w. That is, 
v is rotated positively through an angle 29 about an axis whose 
direction is defined by q. This is exactly the situation described 
earlier in Section 5.11 and called Perspective #1. 

On-the-other-hand, if I go find myself a seat on the vector v, 
then, for this same operator qvq*, what I see happening is that 
the coordinate frame rotates in a negative direction through the 

A rotation about a directed axis 
js defined as a positive rotation if 
it has right-handed sense, that is, 
with the thumb on the right hand 
extended along the directed axis, 
the fingers wrap in the direction 
which defines a positive rotation. 



156 CHAPTER 5.   QUATERNION ALGEBRA 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 

angle 29 about this same axis which is denned by the quater- 
nion vector q. This is what we called Perspective #2, also 
described earlier in Section 5.11. 

Up to this point we have used the operator of Equation 5.5. 
We could just as well have used the quaternion operator 

Mv)     = q*\q 

of Equation 5.6. Keeping in mind our remarks on the observer's 
perspective, made above, we then would have proved the follow- 
ing theorem: 

Theorem 5.2:       For any unit quaternion 

Q     =     Qo + q     =     cos 9 + u sin 9 

and for any vector v E R? the action of the operator 

Lq*(v)     =     q*vq 

may be interpreted geometrically as 

• a rotation of the coordinate frame with respect 
to the vector v through an angle 29 about q as 
the axis, or, 

• an opposite rotation of the vector v with re- 
spect to the coordinate frame through an angle 
29 about q as the axis. 

It is important to note just how closely related these two theo- 
rems are: If in Theorem 5.1 we change the sign of the angle and 
therefore the direction of rotation, then Theorem 5.1 becomes 
Theorem 5.2, and visa versa. This tends to confirm that if the 
angle may be chosen from — n < 9 < ir then we could get by with 
only one Theorem — and carefully chose the proper perspective. 
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On-the-other-hand, assuming positive angles, it may be not 
only convenient but it may be that there is precedence and there- 
fore it would be more conventional that we properly relate these 
operators in the following manner: 

qvq 

q*vq 

vector rotation 

frame rotation 

in much the same way as we do with matrices, when we write 

M   —+   frame rotation 

then       Ml vector rotation 

So we let the Theorems stand! 

In summary, Theorem 5.1 states that the quaternion opera- 
tor 

Lq(v) = qvq* 

may be interpreted as a point or vector rotation, with respect to 
(or, relative to) the (fixed) coordinate frame, and Theorem 5.2 
states that the quaternion operator 

Lq-{v) = q*vq 

may be interpreted as a coordinate frame rotation, with respect 
to (or, relative to) the (fixed) space of points or vectors. What 
is fixed may depend upon the practioners perspective. 

Even though we stated earlier that with the appropriate 
choice of the angle 6 (specifically whether 6 is defined to be 
positive or defined to be negative) the two operators of Equa- 
tions 5.5 and 5.6 may in fact be equivalent. However, it will still 
be important in many applications to maintain the distinction 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 
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Equation 5.5 

w = qxq* 

between the results of these two theorems. Hence from this point 
on we shall uniformly interpret the quaternion rotation operator 
of Equation 5.5 geometrically as a point rotation with respect to 
the frame, while we interpret the quaternion rotation operator 
of Equation 5.6 as a coordinate frame rotation with respect to 
the point or vector space. The importance of this distinction is 
found only in the need to decide which of these two geometric 
interpretations is appropriate in a given application. 

Equation 5.6 
w = q*vq 

We again emphasize that the choice of which of these two 
quaternion operators we use in a given application is actually 
arbitrary, and so the choice should be made of the basis of what 
seems natural and convenient. We can hardly emphasize too 
much the fact that the important consideration is the relative 
relationship between the vectors and the coordinate frame. It is 
most important to realize that in a specific application we begin 
with an initial relative relationship between the vectors and the 
coordinate frame, and that these quaternion rotation operators 
then simply modify this relative relationship. Which rotations 
one uses to get to the desired final relationship, that is, whether 
one uses point rotations (frame fixed) or frame rotations (points 
fixed), is not the significant matter; these two perspectives are 
identical except for the sign on the rotation angle. Having said 
this, however, we must also say that in a given application the 
choice must be made explicitly and carefully. 

5.16    Quaternion Operator Sequences 

In many applications it will be important to consider, as we did 
in the case of matrix rotation operators, a sequence of these 
quaternion rotation operators. By such a sequence we mean one 
operator applied after another, and so on, in some specified or- 
der. Hence we need to know that a sequence of such operators 
itself represents a rotation in R3. 
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So, suppose that we have two operators of the sort described 
in Equation 5.9. Let p and q be two unit quaternions which 
define the quaternion rotation operators 

and 

Lp(a)   =   pap* 

Lq(b)   =   qbq* 

Now, let u be a vector to which the operator Lp is applied as 
shown in Figure 5.5, to obtain 

Figure 5.5: Rotation Operator Composition: LqoLp 

v   =   Lp(u) 

=   pup* 

To this result we apply the operator Lq, thus obtaining what 
sometimes is called the composition of the operators Lq and Lp, 
denoted Lq o Lp, we get 

w   =   Lq(v) 

=   Qvq* 

= q{pup*)q* 
=   (qpMqpY = Lqp(u) (5.18) 

But now, since p and q are unit quaternions, so is the product 
qp. Hence, Equation 5.18 describes a rotation operator of the 
form of Equation 5.9, in which the defining quaternion is exactly 
the product of the two constituent quaternions p and q. The axis 
and the angle of this composite rotation is, of course, given by 
the product qp. Thus we have proved the following theorem. 

Equation 5.9 
Quaternion Operator 
w     =     £,,(v) 

=     9V9* 

=     (go + q)(0 + v)fao-q) 
=     {2ql - l)v + 

2(q-v)q + 
2«o(q x v) 
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Theorem 5.3: Suppose that p and q are unit 
quaternions which define the quaternion rotation op- 
erators Lp(u) = pup* and Lq(v) = qvq*. Then the 
quaternion product qp defines a quaternion rotation 
operator Lqp which represents a sequence of opera- 
tors, Lp followed by Lq. The axis and the angle 
of rotation are those represented by the quaternion 
product, say, r = qp. 

Equation 5.5 

w = qvq* 

Equation 5.6 
w = q*vq 

In the proof of Theorem 5.3 we used quaternion rotation oper- 
ators given by Equation 5.5. However, if we use the operator 
given by Equation 5.6 we obtain a result which differs distinctly 
from that of Theorem 5.3. That is, with v = q*uq, a computa- 
tion, similar to the one computation above, gives 

w   = 

q*vq 

q*(p*up)q 

(W)*u(w) =  Lpq(u) (5.19) 

Equation 5.19 says that, using the quaternion rotation operator 
of Equation 5.6, the axis and the angle of the composite rota- 
tion are those represented by the quaternion product pq. Note 
that the order of the quaternions is reversed, and, since the 
quaternion product is not commutative, the result is distinctly 
different. In fact, we have the theorem 

Theorem 5.4: Suppose that p and q are unit 
quaternions which define the quaternion rotation op- 
erators Lp(u) = p*up and Lq(v) = q*vq. Then the 
quaternion product pq defines a quaternion rotation 
operator Lpq which represents a sequence of opera- 
tors, Lp followed by Lq. The axis and the angle of 
rotation of the composite rotation operator are those 
represented by the quaternion product pq. 
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Note that in both of these theorems the sequence of oper- 
ators is Lp followed by Lq. The significant difference between 
Theorem 5.3 and Theorem 5.4 is that if the operator of Equa- 
tion 5.5 is used, the quaternion for the composite rotation is the 
product qp, while if the operator of Equation 5.6 is used the 
quaternion for the composite operator is the product pq. This 
distinction is important whenever an application of these ideas 
is made. 

The four preceding theorems give us two very important re- 
sults concerning the use of quaternions for defining rotations in 
R3. Theorems 5.1 and 5.2 essentially define the two quaternion 
rotation operators which we will be using, while Theorems 5.3 
and 5.4 tell how to handle sequences of such rotations. 

In what follows, it usually is more convenient to express the 
basic defining quaternion in a rotation operator in terms of the 
angle 0/2, so that the angle of rotation is 9. And finally, it may 
be well to end this section with two examples, one for each of 
these two important theorems. 

5.16.1    Rotation Examples 

As an example for Theorem 5.1, consider a rotation in R3 about 
an axis defined by the vector (1,1,1). About this axis, the stan- 
dard basis vectors i, j, and k are all generators of a cone — Equation 5.9 
in fact, they all generate the same cone.   For this axis, these Quaternion Operator 
standard basis vectors are equally spaced on the surface of this w   _   L (v) 
generated cone. If the angle of rotation about the specified axis =   gvg* 
is 27r/3, then the vectors, say ai, under this rotation becomes =   (go + q)(o + v)(go-q) 
aj, 6j would become 6k, and ck would become ci. We now ex- =   (2q° ~ 1)v + 

plain exactly how this rotation goes in terms of the quaternion 2}^'t 
v'q* 

operator in Equation 5.9. 
2go(q x v) 
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First, we define a unit vector u in the direction of the vector 
(1,1,1) as 

u = (l/\/3, l/v^, l/\/3) 

Next, the appropriate choice for the angle 9 in the unit quater- 
nion q is one-half of the angle of rotation. Thus we need 6 = 7r/3, 
which gives us cos# = 1/2 and sin# = A/3/2. Hence, the ap- 
propriate quaternion q to be used in defining the quaternion 
operator is 

q   =   cos 6 + u sin 6 

1     ,. 1       . 1      .   1 xV3 

1   1.   1.   1, 
=   2 + 21+2J+2k 

So, if we write the quaternion q in the form q = qo + q we have 

1 
9o=2 

and 

q=2,+ 2J + 2k 

We may now compute the effect of the operator qvq* on, say, 
the basis vector v = i. We need (the reader should check these 
details) 

.      1 
qi=2 

and 
q x l = -j - -k M 2J     2 

Equation 5.9 then gives us 

w   =   qxq* 

=  (i-i)i + 2(i)q + 2(i)(ij-ik) 
1.1.1.1,1.      1, 

=   -21 + 2l+2J + 2k+2J"2k 
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Our example thus shows that the operator in Equation 5.5 does 
have exactly the geometric effect which the theorem guarantees. 
It is not difficult to check that the quaternion operation indi- 
cated does, in fact, take j into k as well as k into i. 

We should note that the preceding result is based on a point 
or vector rotation. It is not difficult to verify that if instead of the 
quaternion rotation operator of Equation 5.5 we had used the 
frame rotation operator of Equation 5.6 we would have obtained 

w   =   L,(i) 

= q*k 
=   k 

A moment's reflection will tell us that this is exactly what we 
should expect from a frame rotation about the axis whose direc- 
tion is given by the vector (1,1,1) through the angle 2rc/3. 

Equation 5.5 

w = q\q 

Equation 5.6 
w = q*vq 

Rotation Sequence Example 

As an example for, say, Theorem 5.4 (a frame rotation, in this 
case), consider first a rotation through an angle 7r/2 about the 
basis vector k as its axis. As we remarked before, in defining 
the appropriate quaternion we must use half of this angle. Since 
cos7r/4 = \/2/2 = sin7r/4, the appropriate quaternion for this 
rotation is 

Geometrically it is clear that this rotation will, for example, di- 
rect the new basis vector, v = i, along the original basis vector 
j. (The reader may wish to check that new basis vector j then 
is negatively directed with respect to the original basis vector i). 

We follow this first rotation with a second rotation, namely, 
one about the new basis vector i through an angle 7r/2. Again, 
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in view of our above remarks, it is clear that the quaternion 
appropriate for this rotation is 

\/2 , A/2. 
y 2 2 

This rotation, applied after the first one, takes the basis vector 
j into the vector k. In summary, according to our Theorem 5.4, 
the composite operator is (qp)*v{qp) where the product qp rep- 
resents the appropriate quaternion for the sequence of these two 
rotations. We may easily find the axis and the angle of this 
composite rotation by computing the product qp. We have 

,A/2_LA/21WV'2_I_ V2.X 

1     11      1       1,     . 
=   2-2k-1+2,+ 2k+2kX1 

1 1. 1. 1, 
= 2 + 21+2J + 2k 

Prom this quaternion product we note that the axis of ro- 
tation is in the direction of the vector (1,1,1) again, as in a 
previous example (a coincidence), and that the angle of rotation 
is 27I-/3. A moment's reflection on the geometry of the situation 
indeed confirms that a single rotation about this composite axis 
through this angle directs the new basis vector i along the old 
basis vector j, j along k, and k along i, if we apply the operator 
for each basis vector, just as Theorem 5.4 claims must happen. 

It is not difficult to check that if we use the rotation opera- 
tor of Equation 5.6 in the preceding example, the result may be 
interpreted as a negative rotation rather than a positive rota- 
tion. It should be no mystery that this is what conjugation does. 

There is much more to be said about the geometry of the ro- 
tation operators we have looked at in this section, and we turn 
to these geometric considerations in the next chapter. 



Chapter 6 

Quaternion Geometry 

6.1    Introduction 

In this chapter we wish to explore in more detail certain geomet- 
ric matters related to quaternions and the quaternion operator 
of the preceding chapter. We already know that the composi- 
tion of two rotations is a rotation; this we have proved in an 
earlier chapter. Here, in the context of the quaternion rotation 
operator, we will analyze the sequence of two rotations from a 
geometric point of view. More specifically, we will find the axis 
and the angle of a composite rotation using geometric methods. 
In fact, we will find formulas which define this axis and angle, 
and these formulas will confirm the algebraic results obtained 
earlier. 

We begin by considering a sphere, or more particularly, the 
set of points which constitute the surface of a sphere.  We let 
the center of the sphere be at the origin of a fixed reference co- Distances between points on the 
ordinate frame in R*. Geometrically it is clear that any rotation Z^o^ZZTl^' 
of the sphere about a vector in this reference frame will take 
points on the surface of the sphere into points on that surface. 
The result is a mapping which takes the surface of the sphere 
into itself. This mapping preserves distances between points on 
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the sphere. It also preserves the measure and the direction of 
the angle between any two great-circle arcs. Every such map- 
ping has two invariant points, namely, the two points which are 
common to the axis of rotation and the surface of the sphere. 

Figure 6.1: Two Rotation Construction 

Suppose we choose two points, say A and B, on the surface 
of the sphere. These two points, in effect define two vectors 
a and b fixed in the reference coordinate frame. We let these 
vectors serve as axes of rotation of the sphere into itself. Now 
consider a sequence of two rotations: the first rotation about 
the axis a, followed by a second rotation about the axis b. We 
ask the following question: 

Can we find a single rotation about some axis which 
is equivalent to a sequence of two rotations about any 
two given distinct axes? 

We know that the answer to this question is affirmative. 
However, in what follows we will confirm this fact geometrically. 
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We begin with a construction on the unit sphere which identi- 
fies two points which axe invariant under any given sequence of 
two rotations. This construction relates the two given axes and 
their respective rotations to an equivalent composite rotation 
axis defined by the two invariant points. Finally, we also show 
how this result is related to the associated quaternion rotation 
operator discussed in the last chapter. 

6.2    Euler Construction 

So consider two distinct but arbitrary points, say A and B, on 
the surface of a unit sphere centered at the origin of a fixed 
reference frame in R3, as illustrated in Figure 6.1. Associated 
with these two points are the related unit vectors, designated 
in the figure as a and b, respectively. For convenience we have 
oriented the fixed reference frame so that the vector a lies in the 
XY plane. Rotations of the sphere into itself are now taken, in 
turn, about these two vectors as axes. Let the sequence of two 
rotations consist of first, a rotation about the axis a through an 
angle a, followed by a second rotation about the axis b through 
an angle ß. 

Points on the Sphere 
The triangle, ACB and its sym- 
metrical reflection AC'B, on the 
sphere is redrawn here in the plane 
to make it easier to follow the dis- 
cussion in the text. 
Visualize the unit vector direc- 
tions, a and b at points A and B, 
respectively, as normal to and di- 
rected out-of-the-page. 

For convenience we here introduce a new notation for a rota- 
tion. By R[v, 6] we mean a rotation about the vector v through 
the angle 6. Further, if the rotation takes the point P into the 
point P' we write 

R[v,6]P=P' 

Since the point B is arbitrary it 
may be viewed as a point in ei- 
ther the rotated space or the initial 
fixed space. 
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In this new notation, the question asked in the introductory 
section of this chapter is simply this: 

Given rotations R[a., a] and R[b, ß], is there an equiv- 
alent composite single rotation R[c, 7] such that 

R\b,0\R[a,a] = R[c,i] ? 

It is important to note that, in 
general, if the rotation sequence 
is commuted, a different compos- 
ite rotation results. 

In this equation the product on the left-hand side simply means 
that the rotation #[a, a] is followed by the rotation R[b, 0\. We 
now use geometric and algebraic methods to show that the ro- 
tation R[c, 7] indeed exists, and we shall develop methods for 
finding formulas which define the axis c as well as the angle 7. 
The axis and angle for this composite rotation, of course, will 
be functions of, that is, be dependent upon the vectors a and 
b and the angles a and /?, which are the parameters of the two 
constituent rotation operators. 

All rotations about an axis, speci- 
fied by a unit direction vector, fol- 
low the right-hand rule. That is, 
with the thumb of the right hand 
representing the specified unit di- 
rection vector, the fingers indi- 
cate the direction for a positive 
rotation (CCW); the direction, of 
course, would be CW for a nega- 
tive rotation. 

6.2.1    Geometric Construction 

Refer once again to Figure 6.1. The two points, A and B, are 
connected by a great circle arc. The first rotation at A, through 
the angle a, is about an axis whose direction is defined by the 
unit vector a; this is followed by a second rotation at B, through 
an angle ß, about an axis whose direction is is defined by the 
unit vector b. The following construction enables us to find the 
direction, defined by the unit vector c, for the axis of the com- 
posite rotation R[c, 7]. 

Consider points C and C' on the surface of the sphere, lo- 
cated so that LCAB = LC AB = a/2 and ICBA = LC'BA = 
ß/2, as illustrated in the margin. If we now have a right-handed 
rotation at point A, through the angle a, it is clear, since the 
arc segments AC and AC have the same length, that the point 
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C is taken into the point C", that is, 

R[BL,a)C = C 

We follow this rotation with a similar right-handed rotation, this 
time about an axis defined by the vector b through an angle ß. 
Geometrically, for the same reasons, it is clear that this rotation 
takes the point C" back into the point C, that is, 

R[b,ß]C' = C 

These remarks make it clear that the point C is a fixed point un- 
der the sequence of these two rotations. Using our new notation, 
we may now write 

R[b,ß]R[a,a]C   =   R[b,ß)C 

=   C 

Since we already know that the composition of two rotations in 
A3 is another rotation in R3, and since the point C is invariant 
under this composite rotation, it must be that the point C lies 
on the axis of the composite rotation. This establishes the unit 
vector direction c as the axis of the composite rotation, R[c, 7]. 

We next construct 7, which is the angle for the composite 
rotation operator, R[c, 7]. This we do on the surface of the 
sphere by considering the rotation mapping of any arbitrary 
point P other than the point C. We must find the angle 7 
such that the equation 

R[b,ß}R[a,ct]P = #[c,7]P 

holds for any point P (remember, the rotation axis has just been 
determined). Since C is invariant under the composite rotation, 
our only restriction on choosing the point P is that P ^ C\ so 
let's take P = A. This choice makes the ensuing geometric and 
algebraic analysis much easier than if we choose an arbitrary 

Points on the Sphere 
The triangle on the sphere is re- 
drawn here in the margin for refer- 
ence as we step through the anal- 
ysis. 

Spherical Triangle 
The triangle on the sphere illus- 
trates the relationship between the 
angles: a, /?, 6, and 7, along 
with the radian distance d between 
points A and B. 
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point (although, it is easy to see we could have chosen P = B 
with the same advantage). 

So we consider the equation 

fl[b, 0\R[BL, a]A = R[c, y]A 

Since the point A is on the axis of the rotation i?[a, a] it follows 

that 

Figure 6.2: Composite rotations of Point A 

R[a, a]A = A 

so that our equation becomes 

R^0\A = R[c,j\A 

The second rotation R[b, ß] however, takes the great-circle seg- 
ment BA into BÄ as shown in Figure 6.2.   In summary, the 
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image of point A, under these two rotations is A', that is, 

fl[b, ß]R[a, a]A = R[c, j]A = Ä 

Prom the geometry in Figure 6.2 it is quite clear that the 

Z7 = LAC A 

Thus it is clear that the rotation (on the surface of the sphere) 
about the point C through the angle 7 takes the point A into 
the point A just as the rotation about the point B through the 
angle ß takes the point A into the point A'. In summary, we 
have constructed, on the surface of the sphere, the angle 7 for 
the composite rotation R[c, 7]. 

This geometric construction does not, however, determine 
the magnitude of the angle 7. About all we can say for the 
magnitude of 7 is that 

S     7 

where 6/2 is the interior angle of the spherical triangle shown 
in Figure 6.2. The angle 6 is a function of the specified rotation 
angles a and ß, and the length, say d, of the great-circle arc 
AB. We must now determine the magnitude of 7 as a function 
of these given parameters, and we will do this algebraically using 
some identities in spherical trigonometry. 

6.2.2    The Spherical Triangle 

Most readers may not be familiar with the details of spherical 
trigonometry, by which we mean the trigonometry of triangles 
whose sides are great-circle arcs on the surface of a sphere. We 
shall not review that subject at this point; rather we shall simply 
appropriate the results which we need to find a formula for the 
rotation angle 7.  The interested reader, of course, may check 
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Y \D 

Spherical Triangle 
The triangle on the sphere illus- 
trates the relationship between the 
angles: a, ß, S, and 7, along 
with the radian distance d between 
points A and B. 

these results in any standard spherical trigonometry textbook. 
As a matter of fact, a bit later we will derive some of these 
formulas in the context of the quaternion rotation operator. 

Consider once again the spherical triangle, ABC, introduced 
in Figure 6.2 and reproduced in part in the margin. It will be 
relatively easy to get a formula for the magnitude of the rotation 
angle 7 if we appropriate the relevant identity from spherical 
trigonometry for the triange ABC. That identity is 

6 .aß aß .    . 
cos -   =   sin — cos a sin — — cos — cos — (o. 1) 

t* A £t £ £t 

where d is the radian distance between point A and point B, 
that is, Id is the central angle subtended by the great-circle arc 
AB. Since, as we observed earlier, 

6     7 
2 + 5=* 

it follows that 

so that 

= 7T — — 

cos-   = C0S(7T - |) 

7 .7 
COS 7T COS — + Sin 7T sin — 

Zi Zi 

7 — cos — 
2 

Therefore we may write Equation 6.1 as 

7 a       ß      .   a        , .   ß 
cos — = cos — cos — — sin — cos a sin — 

2 2       2 2 2 

We may then write 

7 (a + ß)  , „ a  .   ß 
cos —   =   cos -— Ml — cos a) sin — sm — 

2 2 v ;      2       2 

(6.2) 

(6.3) 
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It is now clear that if we are given the magnitudes for the 
angles a and ß, and the radian length of the great-circle arc AB 
(that is, the magnitude of the angle d), we may use this Equa- 
tion 6.3 to calculate the magnitude of the angle 7. 

We remark incidentally that if triangle ABC were a plane 
triangle then we have 

Saß 

2+2+2=* 

and therefore 
7     a     ß 
2 = 2 + 2 

However, for the spherical triangle, Equation 6.3 merely says, if 
angle d ^ 0 then 

a     ß     6 
2+2+2>* 

or, in terms of 7, 
7 a ß 
- < — + - 
2      2      2 

6.3    Geometric Analysis Using Quater- 
nions 

Spherical Triangle 
The triangle on the sphere illus- 
trates the relationship between the 
angles: a, ß, 6, and 7, along 
with the radian distance d between 
points A and B. 

In the preceding sections we described a geometric construction 
which identified the axis and the angle of rotation for a sequence 
of two given rotations. We also derived a formula from which 
the magnitude of the angle of rotation may be computed. In 
this section we accomplish essentially the same goals, but now 
we do this in the context of the quaternion rotation operator of 
Equation 5.13. 

The quaternion notation for a rotation operator is algebraically 
more convenient and more concise, as we shall presently see. 
Earlier in this chapter, when we did the geometric contruction, 
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a rotation about the point C (which defined the unit vector c as 
the axis of rotation) through the angle 7 was denoted by R[c, 7]. 
We noted that if this rotation takes the point A into the point 
A' we write 

A' = R[c,i\A 

Using the result of Theorem 5.1 of Section 5.8.3, we may write 

Figure 6.3: Rotation Sequence 

the rotation R[c, 7] in the form of the quaternion rotation oper- 
ator (as applied to some vector v) 

w = L,(v) = gCl7vg*i7 

In this quaternion rotation operator form the quaternions gC)7 

and q*   are given by 

and 

7 .   7 
tfc,7   =   cos- + csin- 

9c)7   =   cos^-csin^ 
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In this quaternion notation we are using double subscripts to 
denote both the axis and the angle of the quaternion rotation 
operator. We use this notation at this point to emphasize the 
fact that the quaternion employed in the quaternion rotation op- 
erator exhibits directly both the angle of rotation and the axis 
about which this rotation occurs. Using this notation, we next 
derive expressions for the angle, 7, and the vector, c; this will 
confirm the results obtained in the preceeding section. 

Both the direction of the composite axis c, and the angle of 
rotation 7 about this axis, will be expressed as functions of the 
parameters which define each of the two constituent quaternions, 
<7a)Q and %i/3. Without loss of generality, for the purposes of this 
computation we locate the two constituent rotation axes, a and 
b, as illustrated in Figure 6.3. Here, the points A and B are 
located on a unit sphere. The rotation axis a is directed along 
the reference frame X-axis, and rotation axis b lies in the ZX- 
plane. The points A and B are separated by a radian distance, 
d; that is, d is the angle between the two rotation axes. It follows 
that 

b = i cos d + k sin d 

We recall that the quaternion qca (in the composite rotation 
operator) equals the product of the two constituent quaternions 
<7a)Q and q^^; that is, 

7 .   7 gc>7 = cos - + c sin - = qh<0 qa,a 

Using the trigonometric form for the unit quaternions ga,Q and 
q^ß, and the above expression for the vector b, we compute 

7 .   7 
qc>1   =   COS- + CSU1- 

=    Qb,ß Q&,a 

ß    ,   .   ß..      a     . .   a. 
=   (cos-+bsin-)(cos- + isin-) 

(6.4) 
Spherical Triangle 

The triangle on the sphere illus- 
trates the relationship between the 
angles: a, ß, 6, and 7, along 
with the radian distance d between 
points A and B. 
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=   (cos — cos— — sin — cos d sin —) v      2       2 2 2' 
a       ß a .   ß 

+ l (sm — cos — + cos — cos d sin —) 

+ j (sm-sind sin-) 

a ß 
+ k (cos —sind sin—) (6.5) 

This computation gives us another expression for the quaternion 
qCa and, of course, the real and vector parts of the quaternions 
in Equation 6.4 and Equation 6.5 are equal. If we equate the 
real parts we have 

7 a      ß      .   a ß .    . 
cos — = cos — cos — — sin — cos a sm — (6.6) 

2 2       2 2 2 v     ' 

Thus, as was our goal, we have confirmed the earlier geometric 
result given in Equation 6.2. 

However, this quaternion analysis also provides us with infor- 
mation about the direction of the axis of the composite rotation 
— information which was not readily available from our geo- 
metric analysis. The preceeding construction merely located a 
point C which was shown to be a point on the composite rotation 
axis. However, if we equate the vector parts of the quaternions 
in Equation 6.4 and Equation 6.5, we obtain 

1 
2 

csin-   =   iux+juy + kuz 

i / ■   Q       ß a        , •   ß\ where    ux   =   (sm — cos —\- cos — cos a sin —) v      2       2 2 2' 
.aß 

uy   =   sin — sm d sin — 

a ß 
uz   =   cos — sin d sin — 
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Hence, the direction of the axis of the composite rotation is given 
by the unit vector 

iux +juy + kuz 

sin? 
(6.7) 

Equation 6.7 thus defines the rotation axis of the composite 
rotation explicitly as a vector in the reference frame. In this 
equation we use, 

sin- = ^/l-cos2- 

where cos \ is defined in Equation 6.6. Note how directly this 
quaternion approach yields this significant result. 

In the foregoing development the directions of the axes of the 
two successive rotations were separated by an arbitrary central 
angle d. This, of course, is the most general case. However, in 
most if not all applications, the axes for two successive rotations 
are mutually orthogonal. This orthogonality of successive rota- 
tion axes simplifies the results obtained above, because d = 7r/2 
we have cos d = 0 and sin d = 1. Then the simplified expressions 
for both the angle and the axis are 

Note that the tracking application 
of Section 3.6 employed successive 
rotations about orthogonal axes 

and 

7 cos — 
2 

= 
a       ß 

cos — cos — 
2       2 

c 
i ux + j uy + k uz 

sin I 

ZLX = 
.   a       ß 

sin — cos — 
2       2 

Uy = 
.   a  .   ß 

sm — sin — 
2       2 

uz = 
a  .   ß 

cos — sm — 
2       2 

(6.8) 

(6.9) 
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6.4    The Tracking Example Revisited 

Earlier, in Sections 3.6 and 3.7 of Chapter 3, we analyzed in 
some detail an application called the Tracking Transformation. 
The tracking transformation employs two successive rotations 
about axes which are mutually orthogonal. In working out that 
example we used the matrix methods we had developed at that 
point to find formulas for the direction of the axis and for the 
rotation angle of the composite rotation. These are given in 
Equations 3.7 and 3.8 respectively. In this section we confirm 

Figure 6.4: The Tracking Frame 

those earlier results, except that now we use the quaternion ap- 
proach we have just developed. 

Recall that the tracking application consists of an ordered se- 
quence of two rotations taken about mutually orthogonal axes: 
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the first about the Z-axis through an angle a, and the second 
about the new y-axis through an angle ß, as illustrated in Fig- 
ure 6.4. In our earlier discussion of the tracking example the 
angles a and ß were called the bearing and elevation angles, re- 
spectively. 

We now use the quaternion approach to find the axis and 
the angle of the composite rotation in the tracking example. 
Since the first rotation is about the Z-axis through the angle a, 
the appropriate quaternion for defining the required quaternion 
rotation operator is 

a.     ,   .   a 
q = cos— -fksin — 

The second rotation in the sequence is taken about the new y- 
axis, through the angle ß. Hence the appropriate quaternion for 
defining the quaternion rotation operator for this second rota- 
tion is 

ß ß p = cos-+jsin- 

In this example we seek to align the tracking frame X-axis with 
the remote object being tracked, so it seems natural to use the 
frame rotation operator of Equation 5.6. Hence the quaternion 
associated with the composite rotation is the product qp, as 
required by Theorem 5.4. We compute this product as 

,     a    ,   .   a-        ß     . .   ß, 
QP   =   (cos- + ksin-)(cos-+jsin-) 

a      ß , .      a .   ß 
=   cos — cos — + j cos — sin — 

,      •     a ß /, .x    •     a    •     ß +k sin — cos - + (k x j) sm — sm - 

a      ß    . .   a .   ß 
=   cos — cos — — i sm — sm — 

2       2 2      2 
a .   ß    ,   .   a      ß 

+j cos — sm - + ksm — cos — 

The reader should check the de- 
tails of this computaton. In so 
doing, she should remember that 
k • j = 0 and that k x j = -i. 
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From this computation we see directly that the axis of the com- 
posite rotation is defined by the vector 

Quaternion 
Singularities? 

In Section 3.8 we discussed an 
example of a dynamic singularity 
that occurs in the Euler angle-axis 
rotation matrix sequence, ÄjjÄJ. 
If a quaternion rotation operator 
is used to relate this same range 
of tracking frames to the reference 
frame, then obviously a somewhat 
similar dynamic singularity occurs 
in the vicinity of ß - f. But the 
quaternion operator, in this case, 
is merely mimicking this particular 
Euler angle-axis sequence, which 
has a tracking frame orientation 
singularity at ß — f • 

The quaternion rotation opera- 
tor is singularity-free and can re- 
late any two independent coordi- 
nate frames in Ä*. Every min- 
imal matrix rotation operator in 
SO(3), on-the-other-hand, will al- 
ways have at least one singularity 
of the sort described earlier. 

. .   a .   ß 
v   =   -l sin-sin- 

.       a  .   ß 
+j cos - sin - 

,   .   a       ß 
+ksm-cos- 

which confirms exactly our earlier result given by Equation 3.7. 

Likewise, we have a formula for the angle of rotation for the 
composite rotation, namely 

(f> aß 
cos - = cos - cos - 

With an appropriate application of half-angle formulas from 
trigonometry, we may easily reconcile this result with that given 
by Equation 3.8. We point out with some joy and just a bit of 
satisfaction that the quaternion approach does seem to be easier 
and more efficient than the matrix approach. 



Chapter 7 

Algorithm Summary 

Up to this point, in the foregoing chapters we have explored some 
matrix algebra, and more specifically have developed the algebra 
of the matrix rotation operator. We have made some significant 
applications of the matrix rotation operator to a variety of prob- 
lems, including the tracking sequence, the Aerospace sequence, 
determination of the orbit ephemeris for a near-earth satellite, 
and great circle course navigation. By way of contrast to the 
matrix rotation operator, we have introduced the quaternion ro- 
tation operator. We have explored the algebra of quaternion 
rotation operators, and have illustrated the application of these 
operators with an example or two — particularly another look, 
from a quaternion point of view, at the tracking sequence. 

Before going on to further applications of these quaternion 
rotation operators, we will, in the present chapter, pull together 
some of the more important algebraic results developed so far. 
We shall also explore some of the many interesting algebraic re- 
lationships which exist between these two kinds of rotation op- 
erators. For example, we shall be a bit more explicit about how, 
given a rotation matrix, one finds the corresponding quaternion 
operator, and vice versa. Given a sequence of Euler angle ro- 
tations, we will easily represent it by means of a quaternion 
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rotation operator. Given a set of direction cosines, we can like- 
wise find the corresponding quaternion rotation operator. We 
will see how the eigenvalues and eigenvectors of a rotation ma- 
trix are related to the corresponding quaternion. Thus we seek 
to inter-relate the alternative transformations, algorithms, and 
ideas which are part of the jargon employed by practitioners 
of the art of rotation operators, so that terms such as direc- 
tion cosines, Euler angles, quaternions, rotation sequences, in- 
cremental rotations, and the like, will become more familiar to 
the reader. We hope that in this overview the reader may gain 
a better perspective on these matters. 

We should mention that in these notes we have been care- 
ful to distinguish between matrix and quaternion methods for 
studying rotations in R3. However, this distinction will not pre- 
vent us from using the compactness of matrix notation, which 
can be quite convenient for expressing certain results in quater- 
nion analysis. Now and then, in the following sections, we will 
use matrix notation which is not at all related to the rotation 
matrix. 

7.1    The Quaternion Product 

In Chapter 5, in a fairly detailed way, we introduced the product 
of two quaternions, and we will review those results here. In 
Equation 5.2 we wrote 

pq = r   =   7o + r = r0 + in + jr2 + kr3 

where r0 = potfo - PiQi - P2Q2 - Psqz 

n = Poqi + P\qo + P2q3 - P3Q2 (7.1) 

T2 = Po?2 - Pi 93 + P2?0 + P3?l 

^3■ = Poq3 + Piq2 - P2qi +P3qo 
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or, if written in matrix notation 

pq = 

' r0 ' "Po -Pi -P2 -P3 " 9o 

ri Pi Po ~Pz P2 9i 

r2 P2 Pz Po -Pi 92 
. 73 . I Pa -P2 Pi Po   J L 93 J 

' Qo -9i -92 -93 " ' Po " 

Qi 9o 93 -92 Pi 

92 -93 Qo 9i P2 

L Qz 92 -9i 9o   J LPS J 

(7.2) 

(7.3) 

Both Equation 7.2 and Equation 7.3 are matrix representations 
of the quaternion product r = pq. Recall that because multipli- 
cation for quaternions is not commutative, the product r = qp 
will in general be different from the product r = pq. For the 
product r = qp the equations corresponding to those given just 
above then are 

qp ro + iri+jr-2 + kr3 

where     r0 = j>o9o - Pi9i - P292 - P393 

n = Po9i + Pi9o - P293 + P392 

r* = Po92 + P29o + Pi93 - P39i 

rz = Po93 + P39o ~ Pi92 + P293 

Note that this product differs from the product in the other 
order simply in that the sign is changed in certain of the terms. 
This results, of course, from the fact that for the cross product 
of two vectors we have q x p = -p x q. In matrix form, this 
set of equations may be written in either of the two forms 

qp 

' r0 ' 

n _ 
r-i 

. Tz J 

PO "Pi -P2 -P3 

Pi PO P3 -P2 

P2 -P3 PO Pi 

P3 P2 "Pi PO 

90 

9l 

92 

93 

(7.4) 
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0o -0i -92 -03 Po 
01 00 -03 02 Pi 
02 03 00 -01 P2 

03 -02 01 00    J IPs 

(7.5) 

7.2    Quaternion Rotation Operator 
We have defined the quaternion rotation operator Lq(\), acting 
on a vector v, by the equation 

LQ(V) = 0*vg 

We recall that if this operator is to represent a rotation through 
an angle a about a vector q as its axis, the quaternion q must 
be a unit quaternion of the form 

a .   a 
0 = 0o + q = cos - + usin — 

We recall also that we have almost uniformly interpreted the 
quaternion rotation operator Lq(v) = q*vq geometrically as a 
frame rotation through a certain angle about the vector q as 
the axis. We must remark once again, however, that a frame 
rotation through a certain angle is entirely equivalent to a point 
rotation (about the same axis) but through the negative of that 
angle. Hence geometrically this operator may be viewed as ei- 
ther a frame rotation or a point rotation. The direction and 
magnitude of the rotation, in either view, is specified by the 
same quaternion, q. 
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We apply the quaternion rotation operator to vector v, a 
pure quaternion defined in the reference frame, and express it 
as w in the rotated frame. That is, we write 

w   =   Lq(v)    =   q*vq 

=   (9o-q)(v)(9o + q) 
=   (2ql - l)v + 2(v • q)q + 2go(v x q) (7.6) 

Expanding each term in Equation 7.6, in turn, gives 

(29o2-l)v   = 

2(vq)q   = 

(29o2 " 1) 0 
0 (29o2 - 1) 
0 0 

2q\ 2qxq2 2qxq3 

29i92 2g| 29293 

29i93   29293     2g| 

0 29o93     -29o92 
-29o93        0 29o9i 

29o92     -29o9i        0 

0 ' Vi ' 

0 V2 

(29o2 - 1) \ . V3 . 

V\ 

V2 

. V3 . 

29o(vxq)   = 

Then w is the sum of these three matrices, and we write 

V2 

v3 

w Qv (7.7) 

W\ 

■   290
2-l 

+29? 
29x92 

+29o93 

29i93 
-29o92 

* Vi 

1V2 = 
29i92 

-29o93 

290
2 - 1 

+2q2
2 

29293 

+29o9i 
V2 

w3 
29i93 

+29o92 
29293 

-29o9i 
29o2 - 1 
+293

2     . 

. ^3 
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7.3    Direction Cosines 
Given a pair or vectors u and v, the direction cosine associated 

Figure 7.1: Direction Cosine Geometry 

with these two vectors is simply cos0 where 6 is the angle be- 
tween these two vectors. We recall that the scalar or dot product 
of u and v is 

u-v = |u||v|cos0 

where 6 is the angle between the two vectors. In particular, if u 
and v are unit vectors, that is, |u| = |v| = 1, then we have the 
special case 

u • v = cos 6 

Thus for unit vectors u and v, their direction cosine is simply 
their scalar product, u • v. 
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Given a unit vector v in an orthonormal coordinate frame 
{X,Y,Z}, the direction cosines for v are the cosines of the an- 
gles, say a, ß, 7, between the vector v and the coordinate axes 
defined by the basis vectors X, Y, and Z respectively, as illus- 
trated in Figure 7.1. If v is a unit vector, then 

cos a   =   v • X 

cos ß   =   v • Y 

cos 7   =   v • Z 

7.4    Frame Bases to Rotation Matrix 

In this section we develop a geometric relationship between two 
orthonormal coordinate frames and the rotation matrix which 
defines the relative orientation between these two frames. As we 
proceed in this investigation, some interesting perspectives and 
a useful algorithm will emerge. 

We begin with the vector 

v = uii + V23 + v3k 

illustrated in Figure 7.1, where {i j k} is the standard basis in 
R3. If |v| = 1 then the direction cosines and sines for the vector 
v may be written 

cos a =    Vi 

cos/? =   v2 

cos 7 =   v3 

and   sin a   =   ^v\ + v\ 

and   sin ß   =   yjvl 4- 

and   sin 7   =   y vi + v2 

v\ 

sin' 

We know the matrix A is orthogonal and has determinant +1. 
We recall that this means both the rows and columns of A form 
orthonormal sets of vectors. Now suppose that we regard the 
matrix A as representing a frame rotation which relates the ini- 
tial reference frame {X Y Z} to a rotated frame {x y z}. This 

Vy^ IvIsinY 

ivl = 1 

Direction Number 7 
defines the orientation of the vec- 
tor v wrt the coordinate frame Z- 

FVom these trigonometric expres- 
sions for the direction angles ex- 
pressed in terms of the compo- 
nents of the unit vector |v| = 1 
it is easy to verify that 

cos2 a -I- cos2 ß + cos2 7    =    1 

sin2 or + sin2 ß + sin2 -y    =    2 
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means x = AX, y = AY, and z = AZ. In fact, given a vector 
vGi?3, when we write w = Av we mean, in general, that the 
vector w is simply the same vector v, now expressed in the new 
frame. We will show how the rotation matrix A may be written 
in terms of the scalar products of the two sets of basis vectors. 

In terms of ordinary linear algebra, we may think of this 
frame rotation simply as a change of basis for R3. We begin by 
defining a matrix A whose columns are the coordinates of the 
final basis vectors in term of the initial basis vectors. Thus we 
have 

x = anX + a2iY + a3iZ 

y = ai2X + a22Y + a32Z 

z   =   aJ3X + a23Y + a33Z 

Consider some vector v in R3, and suppose that its coordinates 
relative to the final basis are {v\,v'2,v3). This means we may 
write 

= v[x + v'2y + v'3z 

= t/1(anX + a2iY + a3iZ) 

+ v'2(ai2X + a22Y + a32Z) 

+ v'3(anX + a23Y + a33Z) 

Clearly this expression for v may be rewritten as 

v   =   (anv[ + ai2v'2 + ai3v'3)X 

+     (^21^1 + 0>22V2 + Ö23^3)Y 

+   (a>3iv[ + a32v'2 + a33t;3)Z 

If the coordinates of v relative to the initial frame are (vi,v2,v3), 
the uniqueness of coordinates in a coordinate frame tells us that 
we must have 

Vi   =   anv[ + a12v2 + anv'3 
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v2   =   a2iv[ + a22v2 + a23v'3 

v3   -   a31v[ + a32v'2 + a33v'3 

Since we have defined the matrix A = [a^], these three equations 
may be represented by the single matrix equation 

v2 =   A 
r«ii 

v'2 

. V3 . 1^1 
Since bases are independent sets of vectors, it follows that the 
matrix A must be invertible, so we have 

v'2 

v'3 

=   A- 
Vl 

V2 

V3 

We now have the vector v expressed in the new coordinate frame, 
and it follows that the matrix A~l is exactly the rotation matrix 
representing this frame rotation. But since we are here dealing 
with orthonormal coordinate frames, the coordinates of the old 
basis vectors in terms of the new basis vectors are exactly the 
various scalar products, as we have shown above. Hence we may 

write 

A   = 
x X 
x Y 
x  Z 

y-X 
y Y 
y z 

z X 
z Y 
z  Z 

(7.8) 

The rotation matrix we seek is now the inverse of this matrix, 
which is simply its transpose, so in general we have 

A-1  = A1   = 
x  X 
y-X 
z  X 

x  Y 
y-Y 
z-Y 

x Z 
y Z 
z  Z 

(7.9) 



190 CHAPTER 7.  ALGORITHM SUMMARY 

7.5    Angle and Axis of Rotation 
In this section we review four matters. First, given a rotation 
matrix, how does one determine the angle and the axis of the 
rotation? Second, given the angle and axis for a rotation, how 
does one go about writing the corresponding rotation matrix? 

Figure 7.2: Frame Rotation about Eigenvector 

We then consider these same questions, except in the context of 
a quaternion rotation operator. 

The first question asked above has already been answered in 
Section 4 of Chapter 3. There we proved that a 3x3 matrix 
A is a rotation matrix if and only if it is orthogonal and has 
determinant +1. In the part of the proof which shows that 
a matrix with these properties must be a rotation matrix, we 
proved that the rotation matrix operator defined by the equation 

u = Av 
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has a fixed vector, say Vo, which has the property that 

Av0 = v0 

In terms of matrix algebra, if a 3 x 3 matrix A has the property 
that 

Av = Av 

then we say A has the eigenvalue A, with v as its corresponding 
eigenvector. Now it turns out that a rotation matrix always has 
+1 as an eigenvalue (although there may be other eigenvalues). 

IXI = IYI= IZI= 1 

lvl = l 

Oa = cos a 
Ob=cosß 
Oc = cosY 

Figure 7.3: Rotation Operator Geometry 

Clearly, the axis of rotation is a fixed vector for any rotation 
having that vector as its axis.   Hence, the axis of rotation is 
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simply the eigenvector which corresponds to the eigenvalue +1. 
That eigenvector may be found, at least to within a scalar mul- 
tiple, by solving the equation Av = v. Section 5 of Chapter 3 
contains a numerical example of the procedure. 

The proof alluded to earlier also entails a formula for the 
angle of the rotation represented by a rotation matrix A. In 
Equation 3.4 we had 

(p = arccos  

where Tr(A) is the trace of the matrix A, that is, the sum of its 
diagonal elements. We do not review here the details of why this 
is so, but simply note that from this formula we easily compute 
the angle of rotation for any rotation matrix A. 

Normal Plane aXx 
This is a sector of the plane base 
of the cone generated by the ro- 
tation of the unit basis vectors X 
and z about the eigenvector v as 
shown in Figure 7.3. This plane 
is normal to the eigenvector v and 
contains the endpoints of the unit 
basis vectors X and x. 

We next write the rotation matrix in terms of its rotation 
axis v = (vi,V2,V3) and its rotation angle <f>. We do this by 
writing the rotated basis vectors {x,y,z} as linear combinations 
of the orthonormal reference frame vectors {X,Y,Z}, and then 
use Equation 7.9 to write the rotation matrix. 

With reference to Figure 7.3, we write expressions for the 
{x,y,z} frame in the {X, Y, Z} reference frame. We have 

where 

and 

x = Oa + ad + dx 
Öö [ivi +}v2 + ku3)coso; 

ad = {OX -Oa) cos 0 

dx = Ui sin a sin <p 

Ui Xx v 

i     j    k 
= 1    0    0 

t>i   v2   v3 

  -jv3 + kv2 = a unit vector 

(7.10) 

sin a 
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y = Ob + be + ey 

where      Ob = (iüi + }v2 + kv3) cos ß 

^d = (ÖF-Ö5)cos0 

ey = U2 sin ß sin 4> 

and     u2 = Y x v 

i    j    k 
0    1    0 
Vi     V2    Vz 

\vz — \avi 

(7.11) 

sin/5 
= a unit vector 

Normal Plane bYy 
This is a sector of the plane base 
of the cone generated by the ro- 
tation of the unit basis vectors Y 
and y about the eigenvector v as 
shown in Figure 7.3. This plane 
is normal to the eigenvector v and 
contains the endpoints of the unit 
basis vectors Y and y. 

Z     = 

where     Oc 

f* 
and     u3 

Oc + cf + fz 

(iui +jv2 + kt>3)cos7 

(OZ -Oc) cos <t> 

U3 sin 7 sin <f> 

Z x v 

i    j    k 
0    0    1 
V\   v2   v3 

-tt>2+jl>i 

(7.12) 

sin 7 
= a unit vector 

We expand each of these foregoing results, and gather together 
the terms associated with each of the rotated basis vectors {x, y, z}. 
Each of these basis vector expressions are functions of the angle 
of rotation, </>, and of the components of the normalized eigen- 
vector v, about which this rotation occurs. 

Normal Plane cZz 
This is a sector of the plane base 
of the cone generated by the ro- 
tation of the unit basis vectors Z 
and z about the eigenvector v as 
shown in Figure 7.3. This plane 
is normal to the eigenvector v and 
contains the endpoints of the unit 
basis vectors Z and z. 
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Then, the rotated basis vector x is 

x   =   i [v2 + (v2 + v\) COS 0] 

+ j fai^2(l - cos 4>) - v3 sin <t>] (7.13) 

+ k [^1^3(1 — cos (j)) + V2 sin </>] 

In a similar fashion we find 

y   =   i [^1(1 - c°s </>) + v3 sin 4>] 

+ j[v2
2 + (v2

3+v2
1)coS(}>] (7.14) 

+ k [^2^3(1 — cos 0) — Vi sin <j>] 

and     z   =   i [t;3t;i(l — cos</>) — i;2sin</>] 

+ j [^2(1 - cos 4>) + vi sin <f>] (7.15) 
+ k [vl + {v\ + vl)cos<t>] 

These expressions for the rotated basis vectors {x,y,z} can nicely 
be written in matrix form as 

W =   ,4V 
where W =   col[x,y,z] 

and V =   col[i,j,k] 

It is now easy to see that if the basis for the reference frame is 
the standard basis {ij,k}, then the various scalar products in 
Equation 7.9 give the following formula for the rotation matrix 

A   =   A(<f>,vi,v2,v3) (7.16) 
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(vf + v\) COS (f> 

^1^2(1 — COS0) 
+v3 sin 0 

^3^1(1 — COS0) 
—V2.sm<f) 

^1^2(1 — COS0) 
—vz sin (f) 

v2
2+ 

(■uf + v\) COS (f) 

^2^3(1 -COS0) 
+v 1 sin 0 

^1^3(1 — COS0) 
+U2 sin 4> 

V2Vz{\ -COS0) 
—V\ sin </> 

(uj + vQ COS 0 

Having answered the two questions relating to axis and angle 
of rotation for the matrix rotation operator, we now answer these 
same two questions in the context of quaternions. First, suppose 
we are given a rotation operator in quaternion form as 

Lq(y) = q*vq 

where the quaternion q is given by 

</> .   0 q = cos — + v sin — 

We know that the axis and angle of rotation may be read di- 
rectly from the associated quaternion. More explicitly, if the 
unit quaternion in terms of which the rotation operator is writ- 
ten is 

q = qo + q 

then the rotation angle is given by 

<j> = 2 arccos(g0) 

and the direction of the rotation axis is given by the vector q. 

Next, given that we have a rotation in R? which has the unit 
vector v as its axis of rotation with the angle 4> as its angle 
of rotation we simply write the rotation operator in quaternion 
form as 
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where the quaternion q is given by 

<t> •   <f> q = cos— + vsin- 

Our results in this section show very clearly that these ques- 
tions are much easier to answer when we use the quaternion as 
opposed to the matrix rotation operator. The quaternion alter- 
native seems to offer more immediate insight into the geometric 
nature of rotation operators. 

7.6    Euler Angles to Quaternion 

Here we review the derivation of the quaternion required by an 
Aerospace rotation operator. This particular quaternion opera- 
tor is equivalent to the rotation matrix for the Aerospace Euler 
angle sequence: 

tp   =   Heading angle 
9   =   Elevation angle 
<f>   =   Bank angle 

The constituent quaternions are: 

qz   =   cos- + ksin- 

9 9 
qy   =   cos-+jsin- 

<f> ^. .   <t> Qx   =   cos-+ ism- 

then      q   =   qzqyqx = q0 + iqx + jg2 + k#$ 

ip      9      4>        .   1> .   9 .   <ß 
where      q0   =   cos —cos-cos— + sin — sin- sin- 

&t Zt £t £t Zi <£t 

iß      9 .   <f>        .   i> .   9      <j> 
Qi   =   cos-cos-sin- - sin-sin-cos- 
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92 

93 

ip     9      <p .ib      0 .   <f> 
cos —sin-cos- + sin —cos-sin - 

2       2       2 2       2       2 
ip      9      6 ip  .   9  .   <p 

sin-cos-cos- - cos-sin-sin- 

Recall, the Aerospace angle/axis sequence, (ip9<p) —► (zyx), is 
merely one of the twelve possible sequences. Other angle/axis 
sequences, which perhaps are more suitable for some applica- 
tions, may be defined and and their transformations determined 
as suggested above. 

7.7    Quaternion to Direction Cosines 

The Aerospace angle/axis sequence provides a good example 
of how, given the quaternion which defines such a rotation, we 
may write the rotation matrix in terms of direction cosines. The 
rotation matrix whose elements are defined in terms of the angles 
employed in the Aerospace angle/axis sequence, (jl>9<f)) —» {zyx), 
is 

M   =   [my] = MIMlMl 

cos I/J cos 9 sin ip cos 9 

cos ip sin 9 sin (f> sin ip sin 9 sin $ 
— sin ip cos <f> + cos ip cos <f> 

cos ip sin 9 cos </> sin ip sin 9 cos (p 
+ sin ip sin <p — cos ip sin 4> 

(7.17) 

— sin# 

cos 9 sin (p 

cos 6 cos <P 
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■   2<?0
2-l 

+29? 
29i92 

+29o93 
29i93 

-29o92 

29i92 
-29o93 

2gg-l 
+2ql 

29293 

+29o9i 

29i93 

+29o92 

29293 

-29o9i 
29o2 - 1 
+2gf 

=  9*(efc)9 

Here, the quaternion q is a unit quaternion, that is, \q\ = 1. 
The three column (row) vectors of M are ortho-normal and 
det \M\ = -f-1. Each element m^ in the matrix M represents 
the ith direction cosine of the jth reference or basis vector. But 
also, as written above, M = Lq(ek) for k — 1,2,3, where the 
ejfc's axe the standard basis vectors or reference frame. 

7.8    Quaternion to Euler Angles 

The results of the previous section also make it easy to determine 
the Euler angles in an Aerospace sequence, given the quaternion 
which defines the corresponding rotation operator. Prom the two 
expressions for the matrix M on the previous page we can write 

where 

tan^ — 
mn 

sin# 

tan^ = 

-m13 

ra23 

"I33 

mn = 2ql + 2q\-l 
7T&12 = 29i92 + 29093 

Wll3 = 29i93 - 2q0q2 

ra23 = 29293 + 2q0qi 

TO33 = 2q2
Q + 2ql-l 
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The trigonometric ambiguities in this Aerospace sequence can 
be resolved by acknowledging that by definition cosö must al- 
ways be non-negative. Actual values for the angles can then be 
determined from the signs on each of the direction cosine terms 
involved. 

7.9    Direction Cosines to Quaternion 

Given a rotation matrix, say M, our previous results make is 
fairly easy to determine the quaternion for the corresponding 
quaternion rotation operator. In any proper orthogonal matrix 
M = [rriij] = M(?0,9i,92,93) 

ran rai2 "»13 

ra2i "»22 "»23 = 

"»31 "»32 "»33 . 

2<7o2 - 1 

2?i92 

-2?o93 

2?1<?3 

+2<?o?2 

2?i?2 
+29o93 

2<7o2 - 1 
+2qj 

2?2<73 
-2?o9i 

2?i93 

-2<M2 

2^293 

+2g09i 

2ql - 1 
+2q2

3 

from which we can write 

and 

49o9i 

49o92 

49o93 

tr(M) 

"»23 

ra3i 

"»32 

"»13 

=   m12 - ra2i 

=   4^-1 

Prom this last equation above it follows that 

q0    =    (l/2)v/"»n + "»22 + "»33 + 1 

Given this expression for q0, the remaining components 



200 CHAPTER 7.  ALGORITHM SUMMARY 

of the desired quaternion axe easily found. We have 

q\ = (m23 - ■m32)/(4q0) 

92 = (ra3i 
- mi3)/(4g0) 

qz   =   (mi2 - m2i)/(4q0) 

7.10    Rotation Operator Algebra 
Finally, in this section we make some observations about the care 
that must be exercised when performing algebraic manipulations 
involving both matrices and quaternions. 

We could just as well have used the 
quaternion rotation operator 

depending  upon  the  application 
and/or desired perspective. 

7.10.1    Sequence of Rotation Operators 

Consider the following sequence of successive rotations where 
P, Q, and R are distinct rotation matrices. Then writing r*vr 
for Rv and similar expressions for the other matrix rotation 
operators, we get 

Mv   = PQRv 

= PQr'vr 

= Pq*r*vrq 

= p*q*r*vrqp 

= (rqp)*v(rqp) 

For a repeated rotation, say, R = Q = P then 

Mv   = P3v 

= PPPv 

= PPp*\p 

= Pp*p*vpp 

— p*p*p*~vppp 

= (P*)3vp3 
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If one of the matrices, say B, is not a rotation, then we must 
write 

Mv   = PBQv 

= PB(q*vq) 

= P[B(q*vq)} 

= p*[B(q*vq)}p 

7.10.2    Rotation of Vector Sets 

In most applications it will be necessary to rotate either an entire 
coordinate frame which is defined by its set of three basis vectors, 
or an entire rigid body which is defined by a set of vectors or 
points. We adopt the following convenient matrix notation to 
represent a collection of n column vectors. 

V   = Vi    v2 

A quaternion rotation operator which operates on this set of 
vectors produces a new set, which we collect in the matrix, say, 
W. We will define this operation to mean 

W   =   Lq(V) 

=   qVq* 

=   Q vi   v2 

qviq*   <7v2<?* 

Wi    w2 

I       ! 

qvnq 

w„ 



202 CHAPTER 7.  ALGORITHM SUMMARY 

where each vector Vj e V is rotated according to the specified 
quaternion rotation operator Lq to give the corresponding ro- 
tated vector WjeW^. 

Note in particular that with this meaning of Lq(V) = qVq*, 
Equation 5.11 implies that for any 3 x n matrix V, 

Lq(V) = qVq* = QV 

where Q is the rotation matrix which corresponds to a rotation 
operator using the quaternion q. But now more specifically, if we 
take V to be a 3 x 3 identity matrix /, whose columns represent 
the standard basis in R3, we get the interesting formula 

Q  =  QI =qlq* 

When using matrices in an expression, along with quaternion 
rotation operators, the algebra must be done with considerable 
care. In the next section we consider some examples which will 
confirm and emphasize this note of caution. 

7.10.3    Mixing Matrices and Quaternions 

At this point the reader is fairly well acquainted with the fact 
that there is a certain equivalence between the expressions 

u = Av and u = La(v)  = a*v a 

Here it is understood, of course, that the matrix rotation oper- 
ator A and the quaternion rotation operator La are alternative 
representations for the same rotation. We emphasize, however, 
that although rotation matrices may be equivalently represented 
using quaternions, those matrices which are not rotations have 
no such quaternion representation. 

Consider first a simple operator which is the product of two 
matrices P and D, where D is some arbitrary 3x3 matrix, P is 
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a rotation matrix, and the vector, v, is an arbitrary 3-tuple. Be- 
cause matrix multiplication is associative, the expression PDv 
can be grouped in different ways, in preparation for conversion 
to a quaternion form. We write 

Mv = PDv (7.18) 

(a) = (P)Dv = (p*IP)Dv 

(b) = (PD)v = (p'Dp)v 

(c) = P{Dv) = p*(Dv)p 

The grouping in Equation 7.18a suggests first converting the 
rotation matrix P to p*Ip, which is still a 3 x 3 matrix, but 
whose elements are functions of the associated quaternion ele- 
ments. 

The grouping in Equation 7.18b suggests first converting the 
matrix PD into p*Dp, which also is still a 3 x 3 matrix, but 
whose elements are functions of the dij and the pk elements. 

The grouping in Equation 7.18c is the quaternion operation 
p*(Dv)p on the matrix product Dv. 

These three, of course, must all give equivalent results. 

In order to illustrate a potential algebraic pitfall, we consider 
next a simple expression 

Mv   =   PDPlv (7.19) 

where D is again some arbitrary 3x3 matrix and P is a rotation 
matrix. This expression, rewritten using quaternions, is 

Mv   =   p*[D(pvp*)]p (7.20) 

Now since quaternions as well as matrices are associative under 
multiplication we might be tempted to ignore the parentheses 
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and brackets in Equation 7.20 and write 

Mv = p*[D(pv p*)]p   = (p*Dp)v = PDv ^ PDPlw 

Collapse this ? 

JN O! Quite obviously, something goes wrong when we perform 
the indicated cancellation; we lose P1 in Equation 7.19. The 
problem is that in the product enclosed in the square brack- 
ets, namely D(pvp*) we do not have the required associativity. 
Therefore we may not write 

[D(pvp*)] = [D(pv)]p* 

as the above algebraic manipulation would require. Notice in 
particular that the product D(pv) makes no sense, because D 
is a 3 x 3 matrix while (pv is a 4-tuple. 

We may, however, legitimately write Equation 7.19 in at least 
these three ways 

Mv   =   (PtD)Pv = (pDp*)(p*vp)      or 

=   PlD{P\) = p(Dp*vp)p* or 

=   Pl{DPv) = p[D(p*vp)]p* 

Whichever of the possible ways one might choose to associate 
the various adjacent factors in the expression; the parentheses, 
in general, may not be ignored. 

Another way of looking at what went wrong earlier is that 
the matrix D in Equation 7.19 must operate on the vector 

P'v = pvp* 

before the final quaternion operation can be performed. 
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Perhaps writing the process in operator notation makes this 
clearer. 

Mv   =   PDPlw 

=   LpDLp-v where implicitly 

the nesting is taken to be the most natural 

=   Lp[D(Lp.v)} 

As a final example which again emphasizes the caution re- 
quired in the algebraic manipulation of matrices and quater- 
nions, consider the matrix 

M = AP'CP 

Here A and P are rotation matrices and C is some constant non- 
singular 3x3 coupling matrix. This is called the 'normalized' 
signal matrix (which we will discuss in considerable detail later) 
in a Position and Orientation Measurement System. 

We convert this matrix M to an equivalent expression using 
quaternions. Again, we find it helpful to have the operator M 
apply to some arbitrary vector, v — a pure quaternion. That 
is, 

w = Mv = a*p[C(p*vp))p*a 

Here one might be tempted to ignore the braces and brackets un- 
der the assumption that the associativity property will allow one 
to collapse those adjacent operators which are mutual inverses, 
namely pp* = p*p = 1, wherever they occur. For example, can 
we do the following 

w = Mv = a*p[C(p*v p))p*   a 

May we Collapse this ? 



206 CHAPTER 7.   ALGORITHM SUMMARY 

Collapsing these terms gives 

w = Mv = a*pCp*va 

However, note that certain associations of the remaining terms 
are not conformable. For example, the 3x3 coupling matrix C 
can not operate on the 4-tuples which, in general, are produced 
by the operation p*v a . For this reason, to make the operations 
conformable after collapsing p)]p* we also had to rearrange the 
parentheses as follows 

u = Mv = a* [{pCp*) v]a 
*—»—' 

Do this next? 

At least this next suggested operation seems possible. However, 
if we express this last equation in terms of equivalent matrix 
operations we get 

u = Mv = APlCw 

We LOST an operator P in the quaternion collapse. 

In summary, great care must be exercised when certain ma- 
trix operators must be retained, such as the coupling operator 
C = dg[2, —1, —1] for example, which must operate on a vec- 
tor or set of vectors as we shall see in Chapter 11. 



Chapter 8 

Quaternion Factors 

8.1    Introduction 

In the preceding chapters, as we developed the theory of matrix 
and quaternion rotation operators, we have placed considerable 
emphasis on sequences of such operators. This in turn entailed 
much use of matrix and quaternion products, and up to this 
point, our theory and applications have been based on these 
products. 

In this chapter we shall see whether this approach can be 
reversed. That is, we shall ask the question: 

Given a certain matrix or quaternion, associated with 
some rotation in R?, can we factor this matrix or 
quaternion into products in which the factors also 
represent meaningful and useful rotations in R3 ? 

More specifically, suppose we have two coordinate frames related 
by some rotation matrix or quaternion operator. 

Is it possible to decompose the matrix or quaternion 
into factors which represent a sequence of rotations 
about, say, principal axes? 

207 
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If so, perhaps certain computational efficiencies or advantages 
may result. 

Our intent in this chapter is to answer these questions in 
the affirmative. In fact, most of the useful representations for 
rotations require that the matrix or quaternion be factored. We 
now develop the algebra which will yield a variety of factoriza- 
tions, subject to certain constraints which are often useful and 
appropriate. But first, some preliminaries. 

8.2    Factorization Criteria 

At this point it is not at all obvious why one would want to fac- 
tor a given rotation matrix into a product of two or more other 
rotation matrices. The same may be said about a quaternion 
which is associated with a given rotation in R3. One conceivable 
reason might be that certain factorizations may afford a more 
time-efficient processing scheme. Another reason may be that 
such factorizations may be chosen so as to provide necessary 
geometric relationships in certain applications. For example, 
one or more of the factors may be assigned special geometric 
attributes which are meaningful to the application, in order to 
establish some useful relationship between the two factors for, 
say, computational reasons. We will encounter these matters in 
the applications which are discussed later. 

It may be helpful for our discussion of these factorizations 
to list a few of these criteria which give direction to our factor- 
ization efforts — what we may call factorization strategies. We 
identify some of these as follows. 

1. A specific factor may represent a rotation about a princi- 
pal axis; then, the vector part of the quaternion (in the 
quaternion operator) has only one non-zero component. 
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2. The factors may be chosen so that the successive axes of 
the rotation sequence they represent are orthogonal. 

3. Factors may be chosen so as to incorporate some combi- 
nation of the foregoing. 

4. We might seek three or more factors which are associated, 
for example, with an Euler angle-axis rotation sequence. 

5. The vector defining the rotation axis associated with one 
of the factors is chosen in some direction especially mean- 
ingful to the application. 

The above listing of possible factorization criteria surely is not 
exhaustive; certain applications could well impose other sorts 
of constraints or conditions (See, for example, the application 
considered in Chapter 11). In the following sections we con- 
sider some of these specific factorizations in the context of some 
applications which are now familiar to us. We begin with fac- 
torizations of rotation matrices and follow that with analogous 
factorizations of quaternions. Once again, as a result of this 
effort, we should be able to compare the efficacy of matrix and 
quaternion representations for rotations in R?. 

8.3    Transition Matrices & Transition 
Quaternions 

We begin by noting that any two rotation matrices (that is, any 
two 3x3 orthogonal matrices with determinant +1), say A and 
B, may be related by a third such matrix, say T, which we will 
call a transition matrix. We shall say that the transition matrix Recall that for a rotation matrix 
       . , . ,   .       ,  .   .      ., .    , . i.  •      n •£ A, its inverse is simply its trans- T takes the rotation matrix A into the rotation matrix B it p(;se of A denoted A± 

B = TA 
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Throughout our discussions,  ail 
quaternions  are  assumed  to  be 
unit quaternions for quite obvi- 
ous reasons and unless otherwise 
noted — because the inverse of 
any unit quaternion p is simply 
its complex conjugate p*.    Effi- 
ciently maintaining this Euclidean 
norm, or any other useful norm in 
a dynamic environment, is a non- 
trivial matter, usually application 
dependent. Here again, the reader 
is given the opportunity to exploit 
her favorite normalizing process. 

or equivalently if 
T = BA* 

Of course we could also have factored the matrix B as 

that is 

B = AT 

T = A'B 

where T again takes A into B. It should be noted, however, 
that the transition matrices, which in both cases we denote by 
T, are different, since we know that matrices in general do not 
commute under multiplication. At any rate, the idea of a tran- 
sition matrix does provide a simple mechanism for representing 
any rotation matrix as a product of two other rotation matrices. 
That is to say, if 5 is some given rotation matrix, and if the 
rotation matrix A represents some significant physical attribute 
of the system which gives us B, then the transition matrix T is 
simply a rotation which relates A and B. 

Which of the above two factorizations is appropriate, of course, 
will be dictated by the application, as we shall see. For these 
factorizations, however, there often are a variety of possible, as 
yet unspecified, constraints or attributes. These constraints and 
other possible factorizations will be considered in this chapter. 

We next introduce transistion quaternions in exactly the 
same way. Any two unit quaternions, say p and q, may be re- 
lated by a quaternion t, which, just as in the case of matrices, we 
call a transition quaternion. The transition quaternion t takes 
the quaternion p into the quaternion q if 

q   =   tp 
or equivalently t   —   qp* 

Obviously, we could also have factored the quaternion q as 

q—pt    =»     t = p*q 
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where t again takes p into q. Just as in the case with matrices, it 
should be noted that the transition quaternions, which in both of 
these cases we denoted as t, are different since we know quater- 
nions, in general, also do not commute under multiplication. As 
before, the idea of the transition quaternion also provides a sim- 
ple mechanism for representing any quaternion as a product of 
two quaternions. So if q is some given quaternion, and if the 
quaternion p represents some significant physical attribute of 
the system which gives us q, then the transition quaternion t 
simply relates p and q. 

8.4    The Factorization M = TA 

We now consider the factorization of rotation matrices, subject 
to the factorization criteria listed above. As we have already 
mentioned, there may well be other factorizations which are 
useful. We shall consider only two or three possibilities, hop- 
ing that the reader may learn from the details how other useful 
factorizations may be investigated. 

8.4.1    Rotation Matrix A Specified 

We assume we are given some general rotation matrix 

M   = 
mn rai2 ^13 
ra2i m22 ra23 
T7i3i   m32   m33 

Thus M is orthogonal, that is, MlM = MM1 = J, and M 
has determinant +1. This implies that both the rows and the 
columns of M, as vectors in R3, form orthonormal sets. This 
means, of course, that the sum of the squares of the elements 
in any row or column is 1, and that the scalar or dot product of 
any two distinct rows or any two distinct columns is 0. 
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We begin, investigating the factorization of matrix 

M = TA 

where, in accordance with factorization criterion 1 above, the ro- 
tation matrix A is chosen to represent a rotation about a prin- 
cipal axis. The matrix T is an appropriate transition matrix 
which we wish to determine. Without loss of generality we may 
let A represent a rotation about, say, the Z-axis, through the 
angle ip. Thus A has the form 

A   = 
cos ip     sin ip   0 

— sin ip   cos ip   0 
0 0      1 

We now define the matrix T to be 

T   = 
«11 tyi «13 ] 
«21 «22 «23 
hi «32 «33 . 

Since the inverse of an orthogonal matrix is simply its transpose, 
it is easy to solve for the transition matrix T; we write 

T = MAl 

And it follows directly that the indicated matrix product pro- 
duces the following elements for the matrix T 

til = ma cos ip + mis sin tp 

til = —mn sin ip + mi2 cos ip 

«13 = mi3 

«21 = Tfi-ix cos ip + 17122 sin ip 

«22 = —m2i sin ip + m22 cos ip 

«23 = m23 

«31 = T7l3i COS Ip + 77132 sin 1p 

«32 = —m3i sin ip + J7132 cos ip 

«33 = m33 
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Since the matrix M is given, the transition matrix T is deter- 
mined as soon as we specify the rotation angle iß in the matrix 
A. It thus appears that, given a general rotation matrix M, the 
rotation represented by this matrix can always be expressed as 
the product of an arbitrary rotation about the Z-axis, followed 
by an appropriate rotation represented by the transition matrix 
T. 

We should remark that a rotation matrix is always invertible, 
so in the above factorization the rotation represented by the 
matrix A could as well have been any specified rotation. We 
have simply specified A to represent a rotation about a principal 
axis, in accordance with the first factorization criterion above. 
Incidentally, either of the other two principal axes could have 
been used, with similar results. 

8.4.2    Rotation Axes Orthogonal 

Suppose next that we do not specify the angle iß in the matrix A, 
but rather ask whether for a general rotation matrix M the sec- 
ond factorization criterion above can be met. More specifically, 
for the preceding factorization, we ask 

With M = TA, is it possible that the transition ma- 
trix T may represent a rotation whose axis is orthog- 
onal to the axis of the rotation matrix A ? 

As a specific example, suppose we wish the axis of the rotation 
represented by the matrix T to be the new y-axis. Then T must 
be of the form 

cos 6   0   — sin 6 
0      1       0 

sin 6   0    cos 6 
T   = 

where 6 is the rotation angle. The question now becomes 
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Do angles 9 and ip exist for which the factorization 
M = TA is possible for any rotation matrix M ? 

If so, then we have factored the rotation represented by the ro- 
tation matrix M into a rotation about the Z-axis through the 
angle ip, followed by a rotation about the new y-axis through 
the angle 6. We then have a factorization in which the rotation 
axes in the factors indeed are orthogonal, as we desired. In fact, 
the reader may recognize this rotation sequence as the tracking 
sequence discussed earlier. 

With matrices A and T as defined, which have orthogonal 
rotation axes, we compute the product TA. Then we equate the 
elements in this matrix product with the corresponding elements 

/in the matrix M.  This correspondence produces the following 
system of equations 

mix = cos 9 cos ip 

rai2 = cos 9 sin ip 

mi3 = — sin 9 

77121 = — sinip 

77122 = COS Ip 

m23 = 0 

77131 = sin 9 cos tp 

77132 = sin 6 sin ip 

77133 = cos 9 

The question now is whether there are angles 9 and ip for which 
all of these equations are satisfied for a given rotation matrix 
M, and what (if any) constraints must be placed on the matrix 
M in order to reach this goal. We observe immediately from the 
sixth equation in this list that we must have 

77123 = 0 
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This is a necessary constraint on M if the factorization we seek 
is possible. So from now on we suppose that M does satisfy 
this condition. If that is the case (that is rn23 = 0), then in the 
second row of M we must have 

m2\ 4- m 22 1 

since the rows and columns of M all represent unit vectors in 
R3. It is therefore possible to define an angle ip such that 

sin ip = — 77i2i      and      cos ip = mm 

For the same reason, in the third column of M we must have 

™\z + "& = 1 

so that we may define an angle 0 such that sin0 = —mn and 
cos0 = m33 • With these definitions for the angles 9 and ip the 
matrix M may be written in the form 

M   = 
TTlil 77112      — Sinö 

- sin i[}   cos ip       0 
771.31 77132 COS 9 

It remains to show that the elements mn, m^, rn3i and 77132 
must then also be of the correct form. Consider the following 
set of equations 

mn cosöcos'i/j + 77112 cos 0 sin i/;   + 

m3i sin 9 cos tjj + m32 sin 9 sin ip   —   1 

— mn sin ^ + 77712 cos V'   =   0 

— 77731 Sin if) + 77732 COS Ip    =    0 

— mn sin 0 + 777,31 cos 9   —   0 

The first equation in this array results from that fact that the 
matrix M has determinant +1.   The second equation simply 

In many applications the restric- 
tions 

and 

-ir/2 < 0 < 7T/2 

—7T < ip < n 

apply. The reader may check that 
with restrictions such as these, the 
angles 6 and V we uniquely de- 
fined. 
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states that the first and second rows of M are orthogonal. Sim- 
ilarly, the third equation says that the second and third rows of 
M are orthogonal, while the last equation results from observing 
that the first and third columns of M are orthogonal. 

The reader may wish to check that the determinant of the 
coefficient matrix for the above system of equations is — cos ip. 
If in the matrix M we have m22 ^ 0, this determinant is non- 
zero, so that this system of equations has a unique solution. A 
little simple algebra (perhaps using Cramer's Rule) will show 
that this solution is 

mn =   cos 6 cos ip 

ra12 =   cos 6 sin ^ 

ra3i =   sin 6 cos V' 

m32 =   sin 6 sin ip 

Thus we have shown that there are angles 0 and ip such that the 
matrix M is exactly the product of the matrices T and A, as 
desired. Note that this factorization is possible for any rotation 
matrix M in which ra23 = 0. 

On the other hand, if m22 = 0, then cos tj) = 0 and either 
sin^ = +1 or sin^ = —1. If sinV> = +1, then the matrix M 
must be of the form 

M 

Since the rows of M are othogonal, it is easily seen that rau = 0 
and m3i = 0. Hence M must be of the form 

mn 
-1 

m22 
0 

— sinö 
0 

m3i m32 cos 6 

M   = 
0 m12 

0 
— sin! 

0 
mZ2 COS0 
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Since the determinant of M is +1, it follows immediately that 
we have 

rai2 cos 6 + m32 sin 6 = 1 

Since the second and third columns of M are othogonal we also 
have 

—mi2 sin 0 + ra32 cos 6 = 0 

If we solve these two equations we get rai2 = cos 6 and 77232 = 
sinö, and, since in this case sin^ = I, our factorization is again 
shown to be possible. 

In a similar fashion, it is not difficult to verify that the fac- 
torization is also possible in the case that sin^> = — 1. Thus the 
factorization M = TA is always possible, subject only to the 
constraint that 77123 = 0. 

Suffice it to say at this point there are five other cases in 
which a rotation matrix M may be factored into the product 
of two rotations about principal axes. It all depends on which 
element in M is 0. The other five cases are m13 = 0 or m2\ = 0 
or m23 = 0 or ra3i = 0 or m32 = 0. In summary, in order for 
a rotation matrix, M, to be a tracking matrix, it must have 
a zero as one of its six off-diagonal elements. The position of 
the required 0 element in the tracking matrix M depends upon 
which sequence of principal rotation axes is being used. The 
reader should verify that the 0 element always appears in the 
column representing the first rotation axis and in the row of the 
second rotation axis. Thus if we have a z-axis rotation followed 
by a y-axis rotation, as above, the 0 element must appear in the 
77i23 position. 

8.4.3    A Slight Generalization 

In the preceding section we considered a factorization of a gen- 
eral rotation matrix M, a factorization which was based on a 
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rotation about the z-axis followed by a rotation about the y- 
axis. We were able to determine a rather simple contraint on 
the rotation matrix M (namely, M must have an off-diagonal 
zero-element) which guaranteed that such a factorization was 
possible. In order to illustrate the difficulties which one may ex- 
perience in using this rotation matrix approach, let us consider 
a simple generalization of what we have just done. We consider 
once again a general rotation matrix M, and ask the question 

Is it possible to factor the matrix M so that it repre- 
sents a rotation about the z-axis followed by a rota- 
tion about, say, the axis v = i 4- j ? 

If the answer to this question is affirmative, then we have fac- 
tored M into a product in which the rotation axes are orthogo- 
nal, but the axis of the second rotation is not a principal axis. 

We know that a rotation through the angle 9 about the axis 
v = i + j may be represented by the quaternion 

Q = 9o + i9i+J92 + kg3 

where Qo = 
9 

cos- 
2 

i  . e 
Qi V2      2 

1    .   0 
0.2 — 7Ism2 
93 = 0 

Then, using the results which we obtained in Section 5.14 for 
writing a rotation matrix, in terms of the components of the 
corresponding quaternion, we write 

T   = 
2\/2 

\/2(l + cos 9) sin 9 - sin 9 
sin 9 \/2(l + cos0)       sin0 
sin 9 — sin 9        2 \/2 cos 9 
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The next step requires that we compute the product TA, where 
A is the matrix representing a rotation about the z-axis through 
the angle tp, as before. This product is not exactly of a simple 
form. One must now equate the elements in this product with 
those of the matrix M, then ask whether there are angles 6 and 
ip for which all of these equations are satisfied. No doubt some 
constraints on the matrix M will emerge, but the process seems 
overly difficult and tedious. Only the most masochistic reader 
will want to pursue these details. It is (or will be) significant 
to note that the quaternion approach we consider later is much 
easier and much less tedious. 

8.5    Three Principal-axis Factors 

In this section we will extend the ideas studied in the preced- 
ing section by considering the possibility of expressing a general 
rotation in R? as a product of three rotations about principal 
axes. According to Euler's Theorem, such a factorization must 
always be possible, since the theorem states that any two co- 
ordinate frames may be related by a sequence of at most three 
Euler angle-axis rotations. 

Again, we assume some general rotation matrix 

ran mi2 mi3 

m2i m22 m23 

m3i m32 m33 

M   = 

where M is orthogonal, that is, MlM = MM1 = /, and M 
has determinant +1. As before, this again means that the row 
vectors and the column vectors of M form two orthonormal sets 
ini?3. 

Orthonormal Vectors 
Each vector in an orthonormal set 
has norm equal to 1, and the scalar 
or dot product of any two distinct 
vectors in the set is equal to zero. 

As an example of this procedure, we will determine the fac- 
torization M = XYZ where XYZ is the now familiar Aerospace 
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Euler angle/axis rotation sequence. In this sequence the matrix 
X represents a rotation about the x-axis, through the angle <f>. 
Thus X has the form 

X   = 
1 
0 
0 

0 0    1 
cos0 sin</> 

-sin</> COS0 

where the angle 0 is as yet unknown. We then have a factoriza- 
tion of M of the form 

M = XT 

where the transition matrix T is a tracking matrix and the ma- 
trix X represents a rotation about the x-axis. We know that 
this tracking matrix, T = YZ, has at least one off-diagonal zero. 

We now write 

Tracking Matrices 
Those tracking matrices which 
consists of only two principal- 
axis factors have at least one off- 
diagonal zero. 

If T = XY then tu = 0 
f T = XZ then t13 = 0 

;f T = YX then t2i = 0 

f T = YZ then t23 = 0 
f T = ZX then t3i = 0 

f T = ZY then i32 = 0 

til ti2 «13 1 

hi *22 ^23 

*31 *32 ^33 . 

T = XtM   = 

Since the inverse of the orthogonal matrix X is simply its trans- 
pose, it is easy to solve for the unknown elements of T = [iy]. 
The reader should compute the indicated matrix product in or- 
der to check that this matrix equation gives the following list 
for the elements of T 

til = TOn 

tl2 = rai2 

tn = TO13 

*21 = rri2i cos (f> — 77131 sin <f> 

t22 = 7Ti22 cos </> — 77132 sin 0 

*23 = 77123 cos <j> — TO33 sin <f> 

«31 = 77131 cos 4> + m2i sin 4> 

£32 = 77132 cos <f> + 77122 sin <f> 

*33 = ra33 cos <f> + m23 sin <\> 

= 0 
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Since the elements my of the matrix M are known, the tran- 
sition matrix T is determined. For, we have already specified 
the transition (tracking) matrix to be the Aerospace tracking 
sequence, T = YZ. This means that t23 = 0 (as indicated in the 
above listing in the margin). Therefore the rotation angle <f> in 
the matrix X is „ 

,        .      -1 m23 6 = tan      
m33 

Now that we know the angle <f>, the remaining elements in the 
above list for T are readily computed. We now can use the 
techniques of the preceding section (with M replaced by T) to 
determine the angles iß and 9. Thus the matrices Y and Z are 
determined and our factorization is complete. 

An alternative procedure for finding the Aerospace factor- 
ization for any general rotation matrix, however, is to express 

M = XYZ 

where the rotations in the indicated sequence XYZ represent 
principal-axis rotations about the x-axis, the y-axis, and the 
z-axis, through angles, 0, 9, and iß, respectively. This triple 
product of rotation matrices defines the elements of the given 
rotation matrix M to be 

mn = cos V>cos 0 
77ii2 = sin iß cos 9 

7Wi3 = — sin 6 

ra2i = cos ip sin 6 sin <f> — sin ip cos cf> 

rri22 = sin ij) sin 9 sin 4> + cos iß cos <f> 

?7i23 = cos 9 sin (j) 

77131 = cos ip sin 9 cos <f> + sin iß sin <f> 

■m.32 — sin iß sin 9 cos <f> — cos iß sin <f> 

77133 = cos 9 cos <p 
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Rewriting this again in matrix form gives 

M = 
ran rai2 m13 

m21 m22 m23 

m3i   m32   m33 

which term-for-term is equivalent to 

M = 

cos ^cos 8 
cos V> sin 0 sin <j> 

— sin ^ cos <f> 
cos V> sin 8 cos 0 

+ sin ip sin 0 

sin ^ cos 8 
sin ^ sin 0 sin 0 
+ cos ip cos </> 

sin ^ sin 8 cos 0 
— cos tjj sin 0 

— sinö 

cos 6 sin 0 

cos 8 cos 0 

From these equations we can define the three Euler angles 

0 

,       -1 »"12 tan      
win 

— sin-1 mi3 

.      -1 ^23 tan      
»"33 

The above factorization procedures apply equally well to any 
of the other Euler angle/axis sequences. These are very use- 
ful factorizations of rotation matrices. Next we turn to similar 
factorizations of quaternion operators. 

8.6    Factorization: q = st = (s0 +jS2)t 

We start with an arbitrary unit quaternion q as given and we 
wish to find two quaternion factors such that 'q = st; that is, 
q is equal to the quaternion product of two, as yet unspecified, 
quaternions, s and t. As we have already mentioned, in that 
which follows we will assume all of the quaternions to be uni- 
tary, that is, \t\ = \s\ = \q\ = 1. One of the factors is now chosen 
such that it satisfies some meaningful restriction or attribute. 
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We begin by choosing the factor s in accordance with cri- 
terion #1 in Secion 8.2, namely, that s have only one non-zero 
vector component. Here we choose 

s = s0+js2 

The motivation for this first choice is merely that such a quater- 
nion corresponds to a simple rotation about a principal axis — 
in this case about the y-axis. We could just as well have chosen 
the factor s such that it represent a rotation about either of the 
other two principal axes, i or k, without loss of generality. As 
a matter of fact, in some applications a rotation about one of 
these other two principal axes might well be more appropriate. 
But we proceed. We now take an arbitrary unit quaternion and 
compute the factors. 

9   =   9o + *9i + J92 + kg3  =  st 

=     (So+jS2)t 

=   (s0 + js2) (to + i*i + j*2 + kt3) 

obtain 

q0     =     S0t0 — S2t2 

<?1     =     «0*1 + «2*3 

q-i   =   s0t2 + s2to 

93   =   soh - s2h 

These four equations can be written in matrix form as 

9o = 

. 42  J 

9i = 

. q3 . 

SO     -52 

S2       S0 

So     s2 

-S2     So 

to 
t2 

h 
t3 

Because s is a unit quaternion, 
the reader can easily check that 
in each coefficient matrix, which 
relates q and t, the inverse is its 
transpose. 

The transition quaternion components then can be expressed as 
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Since s is a unit quaternion, we 
must have 

so "f" s2 — 1 

't0' So  s2 9o 

1*2 J —S2 So . 02 . 

h So  -S2 9i 
[h\ s2 s0 93 

(8.1) 

(8.2) 

In these last two matrix equations, we emphasize that the quater- 
nion t is not yet determined. The reason is that we have not 
specified the rotation angle. This means that the relative magni- 
tudes of the components So and s2 of the quaternion factor s are 
not known. There are, however, at least two possible options: 

1. Explicitly specify so and s2, or 

2. Specify some further constraint on the quaternion, t. 

We now consider these two options which will, in each case, 
uniquely determine both factors, s and t. 

8.6.1    Principal-axis Factor Specified 

Here, the principal-axis factor 

S = S0+JS2 

is defined to be a rotation through a specified angle about the 
y-axis by specifying values for s0 and s2. Then the transition 
quaternion, t, is uniquely determined by the matrix equations 

t0' So  s2 Qo 
k -s2 So 92 

' h ' So — s2 9i 
[h\ s2 s0 93 

(8.3) 

(8.4) 

These matrix equations give us the following expressions for the 
components of the quaternion t in terms of the specified quater- 
nion s and the given quaternion q. 

to «o9o + «292 
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h   =   s0qi - s2qz 

t2   =   -s2q0 + s0Q2 

h   =   s2q\ + s0<?3 

Thus, given some rotation in R3 represented by the quaternion q, 
we may use these equations to write this rotation as a sequence 
of two rotations, one of which is a rotation through a specified 
angle about a principal axis, namely, the y axis. Of course, 
similar equations are obtained if we use a different principal 
axis. 

8.6.2    Orthogonal Factors 

As one example of Option 2, we may specify that the rota- 
tion axes represented by the two quaternion factors, s and t, be 
orthogonal — a constraint that may well be useful in certain 
applications. With one of the quaternion factors specified to be 
of the form 

s = s0+js2 

as in the preceding section, we now place a constraint on the 
other quaternion factor, t, such that it be of the form 

t = t0 + iti + k£3 

Note that this choice for t makes the vector parts of the two 
quaternion factors, s and t orthogonal. The two matrix equa- 
tions which define both quaternion factors s and t then are 

(8.5) 

(8.6) 

'to' So     s2 Qo 

0 -s2    So . ^. 

h So    -s2 Qi 

h S2       So Q3 

The first of these two matrix equations says that 

to 
0 

sotfo + s2q2 

-s2qo + s0q2 
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Since s is a unit quaternion we must, of course, have 

So + 4 = 1 

Hence, given values for So and s2 which satisfy this requirement, 
there must be some angle, say a, such that so = cos a and 
s2 — sin a.   If this is the case, then from the second equation 
above we have 

sin a      s2      q2 tan a = = — = — 
cos a     So     <?o 

Prom this it appears that 

q2 a = arctan — 
Qo 

We conclude that the choice 

s0   =   cos (arctan —) 
Qo 
Qi 

and      s2   =   sin(arctan—) 
Qo 

will insure that t2 = 0, and that the vector part of t will be 
orthogonal to the vector part of s, as we desired. Having de- 
termined values for SQ and s2, we may compute the remaining 
components of the transition quaternion t from the above matrix 
equations, which give 

to     =     So9o + $202 

t\   =   s0qi - s2q3 

h   =   s2qi + s0q3 

8.7    Euler Angle-Axis Factors 

In previous chapters it was noted that, in general, a sequence 
of at most three angle/axis rotations (recall Euler angles) is 
required to relate two independent coordinate frames.   In this 
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section we will factor an arbitrary quaternion into an ordered 
triple product which must represent one of the twelve possible 
Euler angle/axis sequences discussed earlier. Before we embark 
on any specific Euler angle-axis triple factorization of an arbi- 
trary quaternion, q, we define some helpful notation. 

We introduce this new notation in Figure 8.1. Here the 
quaternions in the ordered sequence of rotations are designated 
a' followed by W followed by c*.  Each of the rotations in this 

Reference 
Frame ~0~©~©~ Arbitrary 

Frame 

Axes:   i, j, k = 1, 2, or 3   j*i     k*j 

Figure 8.1: The Three Rotation Angle-axis Sequence 

figure is assumed taken about one of the principal axes (as yet 
unspecified) of the most recent frame. This new notation em- 
phasizes that the quaternion a, for example, which represents 
the first rotation is taken about a principal axis — as we have 
done earlier when we first defined Euler angle/axis sequences of 
rotation matrices. Here, however, we define these sequences in 
terms of the quaternion. If a represents the quaternion used for 
the 1st rotation, then All quaternions are assumed to be 

unit quaternions unless otherwise 

a = a0 + iai = a1 if the rotation is about the x-axis, or 

a = a0 + ja2 = a2 if the rotation is about the y-axis, or 

a   =   a0 + ka3 = a3    if the rotation is about the z-axis 

The second rotation, b, is taken about one of the principal axes 
of the new frame defined after rotation a, and so on. After these 
three rotations, the resulting quaternion is 

q = aibick    where  i, j, k e 1, 2, 3  j ^ i   k^ j 

noted. 
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Any vector u in the reference frame is related to the (same) vec- 
tor v in the new frame by the now familiar quaternion rotation 
operator 

v   =   q*\iq (8.7) 

Here the vector u, defined in the reference frame, is expressed 
as the same vector v, defined now in the rotated frame. 

It is clear from the foregoing that a sequence of three ro- 
tations which are defined using quaternions in this fashion can 
properly relate any two coordinate frames using the quaternion 
rotation operator of Equation 8.7. The converse, however, sug- 
gests the question 

Question 1 Can any unit quaternion be factored 
into three quaternions which represent any one of the 
twelve Euler angle/axis sequences? 

On the basis of the theorem cited in Section 4.3, the answer to 
this question must quite obviously be 'yes'- We will demonstrate 
this later by considering the xyz (Aerospace) rotation axes se- 
quence and the zxz (Orbit) rotation axes sequence, both of which 
were discussed earlier using the matrix rotation operator. First, 
however, we consider the simpler two rotation sequence as used 
in the now familiar tracking application. 
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8.7.1    Tracking Revisited 
Earlier, we defined the sequence of two rotations illustrated in 
Figure 8.2 as the tracking sequence — and this tracking appli- 

Reference 
Frame 

Tracking 
Frame 

Axes:   i,j = 1,2, or 3   j *i 

Figure 8.2: A Two-Rotation Angle-axis Sequence 

cation has been considered in some depth.   In our quaternion 
analysis of this sequence we used the transformation 

v   =   q uq (8.8) 

Here, the vector u defines the direction of North in the local 
tangent plane, and v defines the vector direction to the remote 
object. The quaternion rotation operator of Equation 8.8 takes 
u into v. However, now that our immediate concern has to do 
with quaternion factors, some interesting questions arise. 

Question 2     Can any arbitrary unit quaternion be 
factored as a two-rotation tracking quaternion? 

Obviously, the answer to this question is 'no.' If we said 'yes' ft 
would be equivalent to saying that any two arbitrary coordinate 
frames can be related by an Euler angle/axis sequence of two 
rotations. This we know is not true. So we ask 

Question 3     What constraints on a unit quater- 
nion make it a two-rotation tracking quaternion? 

To help us answer this question, we investigate the now quite 
familiar tracking application one more time. In this application, 
the tracking frame is related to the reference frame by a two 

Tracking Sequence 
The tracking sequence illustrated 
here may be represented by the 
quaternion 

^     „3,,2 

where   o 
and    fc2 6"     = 

crV 
ao +ka3 

bo +JÖ2 

where all quaternions are assumed 
to be unit quaternions unless oth- 
erwise noted. 
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The quaternions a and ft or more 
specifically aft represent frame ro- 
tations with respect to the refer- 
ence frame as illustrated in Fig- 
ure 8.2. That is, 

v = q'uq = 6'a'uaft 

Tracking Sequence 
The tracking sequence illustrated 
here may be represented by the 
quaternion 

„      „3fc2 

where   a 
and    ft2 

a-V 
ao + ko3 

6o +j&2 

rotation sequence. The first rotation is about the z-axis, followed 
by a second rotation about the new y-axis. In our new notation 
we write this tracking quaternion as 

q = a3b2 

If an arbitrary unit quaternion is to be a tracking quaternion of 
this form, we must have 

q   =   qo + iqi + jq2 + kq3   =  a3b2 

=   (ao + ka3)(60+j&2) 

=   aob0 - ia3b2 + jaQb2 + ka3b0 (8.9) 

In Equation 8.9 it is easily verified, that 

«Mi + 5Ms   =   0 (8.10) 

This gives us a necessary constraint on the quaternion q for this 
particular tracking sequence. It may be verified that this con- 
straint is also sufficient, and thus we have answered Question 3 
for this particular tracking sequence. 

However, a tracking sequence may be defined in other ways. 
If the two-rotation tracking sequence were defined to be, say 

q   -   q0 + i?i + j?2 + kq3 = alb2 

=   (a0 + iai)(b0 + jb2) 

=   a0bo + iaibo + ja0b2 + kaxb2 (8.11) 

then the constraint equivalent to Equation 8.10 would become 

?i?2-?3go   =   0 (8.12) 

We now tabulate the six possible two-rotation tracking sequences. 
Each of these sequences we represent as a composite quaternion, 
q, and each has an associated constraint equation on its ele- 
ments. That is, each two-rotation tracking sequence is written 
in the form 

q = qo + iqi+jq2 + kq3   =   ctbß 
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Specifically, if     q   =   (aQ + iai)(b0 + jb2)   =   alb2 

=   a0b0 + ia362 + jao&2 + ka36o 

then the constraint equation is     qiq2 = Q3Q0 

or if 2L1 q   =   {a0 + 3CL2)(bo + ibi)   =  a2b 

=   a0b0 + ia0bi + ja2&o - ka2&i 

then the constraint equation is     q^qi = —(Mo 

North 

q = a}b2 = (a0 + iai)(60 + J62) 

q = aV = (a0 + iai)(&o + jb2) 

3U or if     q   =   (a0 + ka3)(6o + ibi)   =   ab 

=   a0b0 + ia0bi + ja3bi + ka3b0 

then the constraint equation is     q^qi = q-iqo 

q = a3^ = (a0 + ka3)(60 + 161) 
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q = a
xb3 = (ao + ioi)(60 + k&3) 

North 

q = a?b3 = (a0 + ja2)(&o + k63) 

or if     q   =   (a0 + iai)(b0 + kb3)   =   albz 

=   a0b0 + iai60 - jai&3 + ka0&3 
then the constraint equation is     qiq3 = —9290 

or if     q   =   (ao+ja2)(6o + k&3)   =   a2b3 

=   a0b0 + ia2&3 + ja2&o + ka0&3 
then the constraint equation is     g2<?3 = <7o<7i 

Zr 
q = a3b2 = (ao + ka3)(6o + J62) 

or if     q   =   (a0 + ka3)(&0+j&2)   =   a3b2 

=   aQbQ — ia362 + ja062 + ka3&0 

then the constraint equation is     q3q2 = —<7o(?i 

It must be emphasized that each of these six two-quaternion 
sequences represents only a tracking rotation sequence. If a ro- 
tation sequence is to represent one of the twelve possible Euler 
angle/axis factorizations (for any given unit quaternion), the se- 
quence must include a third quaternion which we denote c* in 
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Figure 8.1. 

Note in particular that the third quaternion factor must be 
one of two types. This third factor must either be about a prin- 
cipal axis not yet employed in the first two quaternion factors, 
or it must be about the same axis as used in the first quaternion 
factor. For example, if the first two factors are represented by 
the familiar tracking quaternion 

q = a3b2 

then the required third quaternion factor ck must either be c1 

or c3. That is, given that the first two rotations in the three 
rotation sequence are represented by q — a3b2, then any unit 
quaternion p may be factored to give either 

p   =   a3b2cl    (distinct principal-axes) (8.13) 

or      p   =   a3b2c3    (repeated principal-axes)       (8.14) 

In the next two sections we develop the algorithms which will 
factor any arbitrary unit quaternion, p, into one of these two (of 
the twelve possible) factorizations. Algorithms for factorizations 
into any of the other ten would proceed in a similar fashion. 

Recall,   as in  Section 4.3,  these 
twelve sequences are 

xyz        yzx zxy 
xzy       yxz zyx 
xyx        yzy zxz 
xzx        yxy zyz 

By a principal-axis quaternion we 
mean a quaternion which has only 
two elements — the only non-zero 
vector component designates the 
principal axis about which the ro- 
tation occurs. 

8.7.2    Distinct Principal Axis Factorization 

Let p be any arbitrary given unit quaternion, that is 

p = po + ipi + m + kp3    and     \p\ - 1 

The Aerospace factorization of p in Equation 8.13 is 

p   =   aJ&V 

=   qc* 

where q   =   a3b2 

and c1   =   Co + ici 

=   cos — + i sin — 
2             2 

(8.15) 
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Here <f> is the angle of rotation (about the x-axis) associated with 
the quaternion c1. 

The constraint on the elements of the quaternion q in this 
particular Aerospace sequence (see Equation 8.10) requires that 

9o9i + 9293 = 0 or 

Prom the foregoing we may write 

9o 

03 

93 

9i 

9 = (Po + ipi + JP2 + kp3)(co - ici) 

so that     9o = PoCo+PiCi 

9i = Pi Co - PoCi 

92 = P2C0 - Pzcx 

93 = P3C0+P2C1 

These four equations written in matrix form are 

(8.16) 

and 

9o Po Pi Co 

. 92 Pi ~Pz C! 

9i P\ -Po Co 

. 93 . Pz P2 C\ 

(8.17) 

(8.18) 

We now pre-multiply Equation 8.18 by the transpose of Equa- 
tion 8.17, which gives 

9o9i+9293 =    [co   Ci] 

=    [co   Cx] 

rhere     A =   P0P1 + P2P3 

B = -P0+P2 
D = P\-PI 

PO P2 

Pi -P3 

A B 
D -A 

Pi   -Po 
P3      P2 

CO 
Cl 

Co 
Cl 

(8.19) 
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Since q0qi + g2<?3 = 0, Equation 8.19 gives a quadratic form 

0   =   A(c2
0 - c\) + ^4-^2coci (82°) 

from which we can write 

2coC! 2A 

d-c\ B+D 
tan0 (8.21) 

In Equation 8.21 we have used the fact (see Equation 8.15) that 

<f> A ■   <t> CQ — cos — and Ci = sin — 

y 

and that 

2CQCI   =   2 sin — cos — = sin </> 

2 2 2 0 •    2 ^ X 
CQ- C\    =    COS   - - sin   - = COS 0 

In Equation 8.21 the values for A, B, and D, are known; hence Remember, if 
tan 4> is known. Therefore, we can solve for the two components _   y 

Co and c\ of the quaternion factor c1. We use these values for CQ X 

and ci, along with the known values of the components of the then    sin»   =     ^— 
given quaternion p, in Equations 8.16, to solve for the elements x 

of q. Then, because q = a3b2, it follows that an     cos     ~   ^/PT 

<7o = a0b0 (8.22) 

9i = -«3^2 (8.23) 

q2 = a0b2 (8.24) 

93 = a360 (8.25) 

And, since a3 and b2 are unit quaternions, we may write 

a3   =   a0 + ka3    and     |a3| = 1 
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=   cos — + k sin — 

and b2   =   b0+jb2    and     |62| = 1 
9 ^- ■   ° =   cos-+jsin- 

Then their respective components can be determined in the fol- 
lowing manner. We divide Equation 8.25 by Equation 8.22 to 
give 

9j»    _    03    _ f_ 
9o ao 2 

The reader may then easily verify that 
9o 

ao   = 
y/qf+H 

and     az   = 
\IQI + QI 

In a similar manner, divide Equation 8.24 by Equation 8.22 to 
give 

q2 b2 6 
—   =   —   =   tan- 
9o b0 2 

Again, from this we can write 
9o 

b0   = 
\JQO + 92 

and      b2   = 
\]ql + 92 

With these computations we have shown that any arbitrary 
unit quaternion p can be factored into 

p = aWc1 = (ao + ka3)(fe0 + jö2)(co + ici) 

in which the rotations in the sequence are about distinct princi- 
ple axes. There are, of course, five other such sequences (about 
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distinct principal axes) and for each of these the computations 
would be similar. 

In the next section we consider the factorization of p into 

p = a3b2c3 = (a0 + ka3)(bQ + }b2){co + kc3) 

where the final rotation c is again about the k-axis — the only 
other choice, given that the first two rotations are specified about 
the k and j axes, respectively. 

8.7.3    Repeated Principal Axis Factorization 

Again, let p be any arbitrary given unit quaternion, that is 

p = Po + ipi+3P2 + kp3    and     \p\ = 1 

In this section, however, the desired factorization of the given 
quaternion p is 

P = a3b2c3 = qc3    where again we let     q = a3b2 

The constraint on the elements of the quaternion q in this se- 
quence (which is the same as that specified above in the Aerospace 
factorization) again requires that 

qoQi + Q2Q3 = 0       or 1 = 0 (8.26) 
Q2     qi 

Just as before, we can write 

q = (po + ipi+JP2 + kp3)(co-kc3) 

so that q0 = PoQ) + P3C3 

9i = P1C0-P2C3 (8.27) 

92 = P2C0+P1C3 

qz = P3C0-P0C3 
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In matrix form these equations may be written as 

go Po  Pz Co 

. 92 . Pi    P\ Cz 

Qi P\     ~Pl Co 

. 93 . Pz   -Po cz 

(8.28) 

(8.29) 

We again pre-multiply Equation 8.29 by the transpose of Equa- 
tion 8.28, to obtain 

qoqi+qrtz   =   [co   c3] 

=   [co   c3] 

Po   Pi Pi -Pi CO 

Pz   Pi Pz -Po Cz 

A   B Co 
D   E Cz 

(8.30) 

where A =   PoPi+PiPz 
B —   -PoPi - P0P2 
D =   P\Pz+PiPz 
E =   -PiPz - PiPo 

Since q0qi + q2qz = 0, Equation 8.30 gives the quadratic form 

0 = Acl + (B + D)coC3 + Ec2
3 

whose solutions can be written 

Si   =   B + D 

Co 2E -1±4   1- 
AAE 

(B + Dy (8.31) 

From Equation 8.31 we note that there are two possible solutions 
for this ratio. Since c is a unit quaternion, we may solve for the 
two components of 

c3 = Co + kc3 
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We then use these values for c0 and c3, along with the known 
values of the components of the given quaternion p, in Equa- 
tions 8.27, to solve for the elements of q, just as in the previous 
section. Because q = a3b2 it follows that 

q0   =   a06o 

qx   =   -a3b2 

q2   =   a0b2 

93     =     O3&0 

And, since a3 and b2 also are unit quaternions, which means that 

a3 = a0 + ka3 b2 = b0+ jh \a3\ = \b2\ = 1 

their respective components can be readily determined, just as 
before. 

There are five other factorizations of this sort (repeated principal- 
axes), and once again the computation for each of these would 
be similar. 

8.8    Some Geometric Insight 

Rather than forming the vector Equations 8.28 and 8.29 from 
the four equations listed in 8.27, we could form the following 

U Qo Co  c3 Po 
Q3 -c3 Co P3 

9i Co -c3 P\ 
. 92 . C3  Co .Pt. 

= Mu 

= Mlv 

(8.32) 

(8.33) 

for the geometric insight it affords. 

In accordance with Equations 8.32 and 8.33 the known vec- 
tors u and v are subjected to equal and opposite rotations, until 
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the vectors U and V are mutually orthogonal, which is required 
by Equation 8.26. Figure 8.3 illustrates the geometric relation- 
ships. 

The angle, say 6, between u and v is given by 
u-v 

and if we let 

e 

a 

arccos MM 

2V2       ' 

then the elements in the rotation matrices in Equations 8.32 and 
8.33 may be defined 

Co   =   cos - 
a 
2 
o 

c%   =   sin 

Figure 8.3: Roll Rotation 

It seems this particular geometry applies only in those cases 
with repeated principal-axis factorizations. 



Chapter 9 

More Quaternion 
Applications 

9.1    Introduction 

In the preceding three chapters we considered at some length 
the algebra of quaternions and how rotation operators may be 
defined in terms of quaternions. Our claim in these notes is that 
defining rotation operators in terms of appropriate quaternions 
is a very useful alternative to the rotation matrix method. We 
ended Chapter 6 on Quaternion Geometry with an application 
of the quaternion rotation operator method to the tracking ex- 
ample of Chapter 4. We were able to show that the quaternion 
method easily and more efficiently produces the same results as 
the rotation matrix method. 

In this present chapter we wish to do the same thing with 
the other examples considered in Chapter 4. We begin with an 
application of the quaternion operator method to the Aerospace 
Sequence example. 

241 
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9.2    The Aerospace Sequence 

It is this Aerospace sequence 
which is displayed by the Head- 
ing and Attitude Indicator — 
one of the primary instruments in 
the cockpit of every aircraft. 

We have already considered the Aerospace Sequence in some de- 
tail in Section 4.4 of Chapter 4, using matrix methods. There we 
introduced this well-known sequence, which consists of the three 
successive coordinate frame rotations illustrated in Figure 9.1. 
The first is a rotation about the Z-axis through a heading angle 

Figure 9.1: Aerospace Rotation Sequence 

We emphasize again, the orien- 
tation angles illustrated in Fig- 
ure 9.1 are too often called yaw, 
pitch and roll. Yaw, pitch and roll 
are actually angular perturbations 
relative to a given state. The an- 
gles Heading, Elevation, and Bank 
angle, define the given state. Yaw, 
pitch and roll represent incremen- 
tal angular motions about the re- 
spective principle axes of the body, 
at this state. 

ip. The second is a rotation about the new y-axis through an 
elevation angle 6. And the third is a rotation about the resulting 
x-axis through the bank angle <f>. 

Proceeding with the quaternion rotation operator approach, 
we first define 

a = — 
2 "S 7=2 
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These half-angle relationships are convenient in order to avoid 
writing the many half-angle expressions in what follows. In 
terms of the angles a, ß, and 7, the three quaternions required 
to define the three appropriate rotation operators are then 

Qz,^   =   cos a + k sin a 

qy>9   =   cos/?+jsin/3 

qXt+   =   cos 7+ i sin 7 

Further, since we have a sequence of frame rotations, the appro- 
priate quaternion product for representing this composite rota- 
tion is given by 

Q   -   Qz,fQy,eqx,<i> 

The computation of this quaternion product, although some- 
what tedious, produces the following results. First, 

QytQxj   =   cos/3cos7 + icos/3shi7 

+jsin/?cos7 - k sin/5 sin 7 

and then finally 

q = qz,i>Qy,BQx,*   —   <?o + i?i + j<?2 + k<?3 

where 

g0 = cos a cos ß cos 7 + sin a sin ß sin 7 

qi = cos a cos ß sin 7 — sin a sin ß cos 7 

q2 = cos a sin ß cos 7 + sin a cos ß sin 7 

53 = sin a cos ß cos 7 — cos a sin /? sin 7 

From this quaternion product we are now able to read directly 
an expression for the composite rotation angle and for the com- 
posite rotation axis. If the rotation angle is 6, then we have 

cos 6/2 = qo = cos a cos ß cos 7 + sin a sin ß sin 7 

The order in this quaternion prod- 
uct is based upon the results lead- 
ing to Equation 5.19 
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Further, the rotation axis may be defined as 

v = (vi,v2,v3) (9.1) 

where    V\ = qi = cos a cos ß sin 7 — sin a sin ß cos 7 

v2 = q2 = cos a sin ß cos 7 + sin a cos/? sin 7 

^3 = 93 = sin a cos ß cos 7 — cos a sin ß sin 7 

We thus have expressions, obtained rather easily using quater- 
nions, for both the angle and the axis of the composite rotation 
— a single rotation equivalent to the Aerospace Sequence. 

We next reconcile these results with the comparable results 
obtained earlier using matrix rotation operators. We recall that 
Equation 4.4 gave us the rotation matrix which represents the 
composite rotation for the aerospace sequence. That matrix, say 
A, is reproduced here for convenience. 

cos ib cos 9 sin ib cos 9 — sin 9 

A = 
cosibsin9sind> \    f smipsm9sm<p \ Q .    , 

.    ,        , ;        - cos 0 sin <p 
— sin ip cos q>    I     \    + cos ip cos <p    I 

cos ip sin 9 cos (b \    ( sin ip sin 9 cos <b \ •       ß       . 
•      /•ill i'i\     COS u COS (p 

+ smipsm(f>    I    \    -costpsmcp    I 

9.2.1    The Rotation Angle 

We recall that when we found this matrix A, we mentioned that 
we could compute formulas for the angle and the axis of the com- 
posite rotation, but we did not do so then. In order to compare 
results with that of the quaternion rotation operator method, 
as well as to illustrate the relative difficulty involved, we shall 
attempt to do so now. 

A formula for the composite rotation angle <5 is fairly easy to 
compute, given the matrix A. Prom Equation 3.4 we have 

.     Tr(A) - 1 
COS 0 —  ^-r  
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where Tr(A) denotes the trace of A, that is, the sum of the diag- 
onal elements of A. Hence for the Aerospace Sequence rotation 
matrix given above, the rotation angle 6 may be computed from 
the formula 

cos ip cos 9 + sin tp sin 0 sin <j> + cos ipcos<f) + cos 6 cos <ft - 1 
cos 6 — ■ ~ 

This matrix result may be reconciled with the corresponding 
quaternion rotation operator result by the appropriate use of 
half-angle formulas from trigonometry. The algebraic details, 
however, are somewhat tedious. So here we simply note that 
one might begin with the identity 

cos 6 = 2 cos2 - - 1 
Li 

As a matter of fact, if we now replace the factor cos 6/2 by the 
quaternion rotation operator result given earlier, we indeed do 
obtain the result given by the matrix rotation operator method. 

9.2.2    The Rotation Axis 

We have already obtained, fairly easily, an expression which 
gives the axis of rotation for the composite rotation sequence 
in the Aerospace example. In this section we find a correspond- 
ing expression from the rotation matrix. This approach entails a 
great deal more work than required by the quaternion method. 
But, let's do it just this once, to confirm that quaternions in- 
deed do offer an attractive alternative to the matrix approach. 
Even a cursory glance at the computational details which follow 
supports this contention. 

We begin by observing that the rotation axis, say v, for any 
given rotation is invariant under that rotation.  Thus we need 
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to find this fixed vector, v = (vi,v2,v3), such that if A is the 
rotation matrix for the Aerospace sequence, then 

Av   =   v 

or     [A-I)\   =   0 

This matrix equation is expanded to give the following system 
of homogeneous equations 

(cos ip cos 9 — 1) vi + sin ip cos 6v2 — sin 0v3   =   0 

(cos ip sin 6 sin <f> — sin ip cos <p)vi+ 

(sin^sin0sin</> + cosV>cos</>- l)v2 + cos Ö sin ^3   =   0 

(cos ip sin 0 cos 0 + sin ip sin 0)^+ 

(sin ip sin 0 cos <f> — cos ^ sin <f>)v2 + (cos 0 cos (f> — 1)v3   =   0 

We will find a non-trivial solution for this homogeneous system 
by setting , say, v3 = 1. The first two equations in the above 
system then become 

(cos ip cos 0 — \)v\ + sin ip cos 0v2   =   sin 0 

(cos ip sin 0 sin 0 — sin ip cos </>)ui+ 

(sin V» sin 0 sin <p + cos ip cos (p- l)v2   =   - cos 0 sin 0 

We may use the well-known Cramer's Rule for solving these two 
equations for v\ and v2. Then we get 

v = (vi,va,t*) = (—,—,1) 

where   Dx   =   sin ^ sin </> + cos ip sin 0 cos <p - sin 0 

D2   =   — cos ^ sin 0 + cos 0 sin <p + sin ^ sin 0 cos </> 

D   =   cos 0 cos 0 — cos ip cos 0 — sin ip sin 0 sin <p 

— cos ^ cos <p+l 
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Since the rotation axis may be expressed as any scalar multiple 
of this vector, we may write 

v   =   (DUD2,D) (9.2) 

where the elements Di,D2, and D are as given above. 

Substitution of numerical values for the various angles in 
both Equation 9.1 and Equation 9.2 does in fact yield vectors 
which are scalar multiples of each other. 

9.3    Computing the Orbit Ephemeris 

In our second example in Chapter 4 we derived algorithms for 

A cruel challenge to the reader: 
Show analytically that the axis of 
rotation in Equation 9.2 has the 
same direction as does the vec- 
tor in Equation 9.1 found using 
quaternion methods. 

Perhaps, for most of us, such a 
demonstration is best left to the 
powerful algebraic manipulations 
performed by programs such as 
Mathematical©. 

X   = Greenwich 

N = Ascending Node 
a = X0+ X 

Figure 9.2: Orbit Ephemeris Rotation Sequence 

computing the orbit ephemeris for an orbiting body, using the 
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rotation matrix method. Here we use quaternions to accom- 
plish the same objective. At this point the reader might whish 
to review the details of the rotation matrix operator approach 
as given in Section 4.5 of Chapter 4. 

The orbit ephemeris for an orbiting body is a tabulation of 
the latitude and longitude of point P (on the earth's surface) 
over time, as shown in Figure 9.2. We again derive algorithms 
for computing the orbit ephemeris parameters, a, L, and a, of a 
near-earth satellite in terms of the orbit parameters, Q, i, and v. 
As in Section 4.5.2, we equate these two Euler angle sequences of 
three frame rotations, illustrated in Figure 9.2. Both of these 3- 
rotation sequences locate the orbiting body in the fixed reference 
frame XYZ. 

Greenwich 

N = Ascending Node 
o = A. o+ *. 

9.3.1    The Orbit Euler Angle Sequence 

The first of the three-rotation sequences mentioned above is 
called the Euler Angle Sequence for Orbits. It comprises a se- 
quence of three rotations, the first of which is a rotation about 
the reference frame Z-axis through the angle Q (Omega). The 
second rotation is about the new x-axis through the angle t 
(iota), while the third is a rotation about the resulting z-axis 
through the angle v (nu). For convenience, we reproduce here 
the matrix (obtained earlier) which represents the composite ro- 
tation equivalent to the orbit Euler angle sequence. 

Orbit Euler Angles cos Q cos v— 
sin Q cos t sin v 
— cos 0, sin v— 
sin f2 cos i cos v 

sin Cl sin i 

sin Q cos u+ 
cos Q cos i sin v 
— sin Q sin i/+ 

cos Q cos i cos v 
— cos n sin i 

sin t sin v 

sin i cos v 

cost 

Notice that although we remarked at the time that from this 
matrix we could compute expressions for both the angle and the 
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axis of rotation, we did not do so. 

The appropriate quaternions for representing the Euler An- 
gle Sequence for Orbits are given by 

Qz,n   =   cos u> + k sin u 

qx<i   =   cos/3-f isin/? 

qz,v   =   cos 7 + k sin 7 

Since the quaternion analysis proceeds in term of half-angle ro- 
tations, we here have defined 

ÜJ -n "-5' 
1 

7 = -v 
'      2 

The quaternion product needed for representing the composite 
rotation operator is then given by 

Q = qz,aQx,LQz,v 

We compute this product in two steps.  First (the reader may 
wish to check out the details of computing this product) 

Qx,iQz,u   =   (cos/?-f-isin/?)(cos7 + ksin7) 

=   cosßcos7 + isinßcos7 - j sin/3sin7 + kcos/?sin7 

It follows that 

qz,nQx,tQz,u   =   (cos u + k sin u) (cos ß cos 7 + i sin ß cos 7 

—j sin ß sin 7 + k cos ß sin 7) 

=   7o + 9ii + 92J + 93k 

where 

q0 = cos u> cos ß cos 7 — sin u cos ß sin 7 

qi = cos u sin ß cos 7 + sin u sin /? sin 7 

q2 = — cos a; sin ß sin 7 + sin u sin /3 cos 7 

q3 = cos a» cos ß sin 7 + sin a> cos /3 cos 7 

N = Ascending Node 

Orbit Euler Angles 
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N R Ascending Node 

Orbit Euler Angles 

From this computation we learn immediately that if 6 is the 
angle of this composite rotation, then 

cos-d   =   q0 

=   cos u; cos/? cos 7 — sin u> cos/? sin 7 

Further, the axis of the rotation is given by the vector 

v = (91,92,93) 

where the components 91, 92, and 93 are given above. 

It is relatively easy to reconcile the matrix rotation operator 
result for the angle of the composite rotation with that just 
obtained for the quaternion rotation operator. One needs only 
to observe that if 6 is the angle of rotation, our matrix rotation 
operator analysis says 

Trace(A) - 1 
COS Ö    =      *—?■  

2 
where   Trace(A)   =   cos Cl cos v — sin Q cos t sin v 

+ cos £2 cos 1 cos v — sin Q, sin v + cos t 

A familiar trigonometric identity gives 

cos 6 = 2 cos2 -6—1 
2 

If we use the above expression for cos 6/2 as given by the quater- 
nion analysis, we indeed do obtain the expression for cos 6 as 
given by the matrix analysis. 

Notice again that the quaternion analysis immediately pro- 
vides an expression for the rotation axis. To obtain such an 
expression from the matrix which represents this rotation, as 
we did for the Aerospace Sequence in the preceding section, 
is somewhat more difficult. And, to analytically reconcile the 
quaternion and the matrix results is again a very difficult mat- 
ter indeed. We shall not pursue those tedious details. 
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9.3.2    Orbit Ephemeris 

The second of the three-rotation sequences mentioned above is 
the Orbit Ephemeris sequence, described in detail in Section 
4.5.2. In that section we computed its matrix representation to 
be 

cos a cos L 
cos a sin L sin a 
— sin a cos a 

cos a sin L cos a 
+ sin a sin a 

sin o cos L 
sin a sin L sin a 
+ cos a cos a 
sin a sin L cos a 
— cos a sin a 

sin L      ' 

cosL sin a 

cosL cos a 
_ 

Recall, in this rotation sequence, the first rotation is about the 
Z-axis through the angle a (longitude), as illustrated. We follow 
this by a rotation about the new y-axis through the angle — L 
(latitude). The third rotation is about the new x-axis through 
the angle a (not shown). The reader should once again review 
the details as given in Section 4.5.2, to assure herself that this 
sequence also relates the fixed reference frame to the orbit frame. 

Since the quaternions used in rotation operators are conve- 
niently defined in terms of half-angle rotations, we again intro- 
duce symbols for. the half-angles 

I* 
a 

2 

L 
2 

a 

2 

The appropriate quaternions for representing the three rotations 
in the composite rotation operator then are 

Qz,a   —   cos \i + k sin \i 

q*L   =   cos e - j sin e 

Qx,a   =   cos p + i sin p 

Orbit 
Axis 

N = Ascending Node 

Ephemeris Angles 



To Avoid Half-angles 

fi = 2UJ 

i = 2ß 
V = 27 

A = 2p 

L = 2e 

a = 2p 
a = A + Ao 

Ü-c = ib = 2T 
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The Orbit Ephemeris sequence is represented by the follow- 
ing quaternion product. 

QZ,<TQI,L<1X,C<   —   (cos A* + k sin p)(cos e - j sin e) (cos p + i sin p) 
=   cos p cos e cos p — sin p sin e sin p 

+i(cos p cos e sin p + sin // sin e cos p) 

-f-j (sin p cos e sin p — cos p sin e cos p) 

+k(cos p sin e sin p + sin p cos e cos p) 

As we have already observed, the Orbit Sequence and the 
Ephemeris Sequence are equivalent. Therefore, the two com- 
posite quaternion representations for these sequences are equal, 
that is, 

Qz,aQy,LQx,a = Qz,flQx,iQz,u 

Once again, in order to avoid the cumbersome half-angle nota- 
tion in the Orbit sequence, we write 

Q, „     1 v 
a; = — ß = - 7= — 

2 H     2 '2 
Using these relationships we will derive a set of algorithms for 
calculating the ephemeris parameters, namely, p, e, and p, each 
as functions of the orbit parameters, u, ß, and 7. 

Should we so desire, we might now equate the components 
of the quaternion for the composite Orbit Sequence with the 
corresponding components of the quaternion for the composite 
Ephemeris Sequence. This would give us a set of equations from 
which we might be able to derive algorithms for calculating the 
orbit ephemeris parameters, namely, p, e, and p as functions of 
the Orbit parameters, u, ß, and 7. However, this direct ap- 
proach is rather difficult, so we make a slight simplification. 

We know that the Orbit Sequence and the Ephemeris Se- 
quence are equivalent. As stated before, this says that 
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If now we multiply both sides of this equation on the left by q*z a, 
then with ip = 2T = Q - a we get 

The quaternions in these indicated products are 

Qz,u — cos u + k sin u 
qx>L = cos/? + isin/3 

Qz,v = cos7 + ksin7 

Qy,L — cos e - j sin e 
qz,4> = cos r + k sin r       r = ip/2 

If we let p = q*tLqx,a and r = qz^qx+Qz,*, we maY write 

p   = po + ipi+jP2 + kp3 

= (cos e — j sin e) (cos p + i sin p) 

r   = r0 + iri+jr2 + kr3 

= (cos r + k sin r) (cos /? + i sin fi) (cos 7 + k sin 7) 

If we now compute the quaternions p and r and equate their 
corresponding components we get the following relationships 

Po   = cos e cos p 

= cos r cos ß cos 7 — sin r cos /3 sin 7     =     r0 

Pi   = cos e sin p 

= cos r sin /? cos 7 + sin r sin ß sin 7     =     T\ 

p2   = — sin e cos p 

= — cos T sin /? sin 7 + sin r sin /? cos 7     =     r2 

p3   = sin e sin p 

= cos r cos jö sin 7 + sin r cos ß cos 7    =     r3 

Here we recall that the inverse 
of qz,<7 is just its conjugate gjff. 
Recall also that if we multiply 
quaternions having the same vec- 
tor part, the angles simply add al- 
gebraically. 

N = Ascending Node 
o « X + \ 

Orbit Geometry 

To Avoid Half-angles 

n 

n = 2w 

1 = 2/3 

V = 27 

A = 2p 

L = 2e 

a = 2p 

a = A + A0 

a = il> = 2T 
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We now simplify these expressions in the following way. Equat- 
ing po and ro gives 

To Avoid Half-angles cos e cos p = cos ß cos(7 + r) (9 3) 

— u Equating p\ and rx gives 
t,   =   2ß 

1/   =   27 cose sin p = sin/?cos(7 — r) (9.4) 

— ^ Equating P2 and r2 gives 
L   =   2e 
a   =   2p sin e cos p = sin/? sin (7 — r) (9.5) 

a   =   A + Ao 
Q-a   =   ip = 2r 

Equating p3 and r3 gives 

sin e sin p = cos /? sin(7 + r) (9.6) 

We shall now use these four equations to obtain expressions from 
which the orbit ephemeris parameters A, L, and a, may be de- 
termined. We notice that dividing Equation 9.6 by Equation 9.5 
gives 

tanptan/?=Sinl7 + T| (9.7) 
sin(7 — r) 

Dividing Equation 9.4 by Equation 9.3 gives 

tan p     cos(7 — r) 
tan ß     cos(7 + r) 

(9.8) 

We now have two equations involving the unknowns, p and r. 
We eliminate p by dividing Equation 9.7 by Equation 9.8 which 
gives 

,20     sin 2(7+ r) 
tan2/?=—^ '- (9.9) 

sin 2(7 —r) 

With 2r = Q—a, some algebraic manipulations on Equation 9.9, 
using appropriate half-angle trigonometric identities, give 

tan fi + tan v cos t 
tana =   9.10 

1 — tan II tan 1/ cost 
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This expression for a agrees with our earlier result obtained in 
Section 4.5 using rotation matrices. Since a = A + A0, the orbit 
ephemeris parameter A is now determined. 

Next, dividing Equation 9.6 by Equation 9.3 gives 

tan p tan e = tan(7 + r) 

and dividing Equation 9.5 by Equation 9.4 gives 

tane 
tanp 

= tan(7 — r) 

Multipying Equation 9.11 and Equation 9.12 gives 

tan2 e = tan(7 - r) tan(7 + r) 

(9.11) 

(9.12) 

(9.13) 

Since r is already determined, this equation determines e. Since 
L = 2e, the orbit ephemeris parameter L is determined. 

Finally, dividing Equation 9.11 by Equation 9.12 we get 

tan(7 + r) 
tan p = 

tan(7 — r) 
(9-14) 

Once again, since r has been determined, we have now also de- 
termined p, or rather, the orbit ephemeris parameter, a = 2p. 
This parameter a, incidentally, is related to the direction of the 
orbit ephemeris path at any given time. With the derivation 
of these algorithms we may now plot the points, (A,L), which 
represent the ephemeris path. 

We note that Equations 9.10, 9.13, and 9.14, do not deter- 
mine unique values for the angles, A, L, and a. The ambiguities 
in these equations must be resolved from information peculiar 
to the application. 

N = Ascending Node 

Orbit Geometry 

To Avoid Half-angles 

Q, = %j 

i = 2ß 
V = 27 
A = 2/i 

L = 2e 

a = 2p 

a = A + A0 

n-o = ib = 2T 
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9.4    Great Circle Navigation 

The final example considered in Chapter 4 was the Great Circle 
Navigation problem. We urge the reader to review that exam- 
ple as we analyzed it from the matrix rotation operator point of 

Figure 9.3: Great Circle Path 

view in Section 4.6 of Chapter 4. Recall that the longitude and 
latitude for the two points A and B on the surface of the earth 
are assumed to be known; that is, the angles Ai, L\, and A2, £2, 
as shown in Figure 9.3, are given. The problem is to determine 
expressions for the great circle path connecting points A and B, 
as specified by three angles. The first is the angle tpi, which is 
the heading of the great circle path at point A toward B. The 
second is the angle 6, which is the radian distance from point A 
to point B along the path. The third angle is fa, which is the 
angle of arrival heading or approach at point B. 



9.5.   QUATERNION METHOD 257 

Our approach in Section 4.6 was to specify a sequence of 
seven rotations, such that their product yields the identity. It 
was from this sequence that the algorithms we seek were derived. 
The sequence is illustrated in Figure 4.20 which we reproduce 

Figure 9.4: Great Circle Rotation Sequence 

here as Figure 9.4. From this sequence we derived two equiva- 
lent sequences, one of which involves only the known angles Ai, 
L\, and A2, L2, the other of which involves only the unknown 
angles ip\, 9 and V>2- By finding matrix representations for each 
of these sequences and equating corresponding elements we were 
finally able to obtain the expressions given in Equations 4.8, 4.9, 
and 4.10. 

The geometry of the situation is illustrated in Figure 9.3. 
We now solve this same problem using the quaternion rotation 
operator approach. 

i  a= Xj-X, 2 

Great Circle Path 

9.5    Quaternion Method 

The ordered product of the quaternions associated with the ro- 
tation sequence of Figure 9.4 must also be equivalent to the 
identity, as was the case in the matrix analysis. Therefore, we 
write 

QZMQILX^I
<
J19QX^QVMQZ,-X2 = identity 

As we have observed before, we may begin this sequence at 
any point and still have the identity, so long as the order of the 
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factors is maintained. Hence, if we define a = A2 — Ai we may 
write 

llMQx^QleQx^QyMQl^ = e = 1 

Next, if we multiply this equation on the left by qy^ and on the 
right by qz^Q^ we 0Dt;am tne equation 

P = 0x,*,?»,*0x,*,   =   QVMQWQIM = r (9-15) 

Notice that in this last equation, the unknown angles fa, 6, and 
fa are on the left side, while the given angles L\, o = A2 — Ai, 
and L-i appear only on the right side. 

Great Circle Path 

It might have been less cumber- 
some if we had avoided writing all 
these half-angles, as we had done 
before, However, we press on! 

The quaternions for the rotations in these products are 

fa  , . .   fa 
Qx,i>i   =   cos — + 1 sin — 

a a 
Qy,0   =   cos-+jsin- 

fa  , . .   fa 
9x,fe     =     COSy+lSUly 

u Li 
qyM     =    COSy+jSUly 

qz,a   =   cos-+ksm- 

qvM    =    COSy+JSUly 

We now compute the quaternion products indicated in Equa- 
tion 9.15 for p and r and write 

p   =   Po + ipi+3P2 + kp3 (9.16) 

,     fa     . .   0iw     0     . .   6        fa    . .   fa. 
=   (cos — - 1 sin y)(cos - - j sin -)(cos — +1 sin —) 

T   =   r0 + iri +jr2 + kr3 (9.17) 

=   (cos— +jsin—)(cos— -fksin— )(cos——jsm—) 
2 2 

a 
2 

0\ 

2' 
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Since the two composite quaternions p and r are equal we 
may equate their corresponding components. Notice that the 
four components of the composite quaternion p are functions of 
the rotation angles tpi, 0 and ip2; and the components of the 
composite quaternion r are functions of L\, a and L2. 

Equating po and r0 gives 

p0   =    cos ^ cos | cos *f + sin *£ cos \ sin ^ 

=    cosfcos(f-f) 

&. Pftfi »msfej- cm ±L mS I sin & 

Verify these equations. The exer- 
cise will help you recall some for- 
gotten trigonometric identities. 

=   cos 4* cos | cos *f + sin ^ cos § sin ^ 

cosfcos(4f-^) =   r0 

Equating p\ and rx gives 

Pl   =   cosf cosfsinf-sinf cosfcosf 

=    cosfsin(f-f) 2 "*"V 2 2 

sin *£ sm | cos ^ + cos 2 sm 2 -"" 2 ^sin^ 

sinfsin(^ + ^)    =   rx 

Equating p2 and r2 gives 

p2   =    sin ^ sin | sin 2 

=    -sinfcos(f+ f) 

=   sin ^ cos I cos *f - 

^-cos^sin^cos^ 

:1a, cos ^ cos I sin ^ 

cosf sin(^-^) T2 
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Equating p3 and r3 gives 

p3   =   sin ^ sin § cos ^+cos f-sin § sin f 

=    sinfsin(f + f) 

=   cos *f sin § cos ^ - sin 4* sin f sin ^   = 

sin § cos(^ + fy)    =   r3 

In summary we have 

9       ip2 — ipi o       L2 — Li 
cos - cos    =   cos — cos  

2 2 2 2 
Q  .   fa - i>\ .   a  .   L2 + Li 

cos -r sm    =   sin — sin  
2 2 2 2 

.9       ^2 + ^1 a  .   L2- Li 
sin - cos    =   cos — sm  

2 2 2 2 
.   0 .   ip2 + 4>i .   o .   L2 + Lx sm - sm    =   sin — sin  

2 2 2 2 

It is from these equations that we may now derive expres- 
sions for the unknown parameters t/>i, ip2, and 9, as functions of 
the known parameters L\, L2, and a. The algebraic details are 
quite tedious, and here we give only hints as to how this may be 
done. 

First, if we square the first two equations and add the results, 
and remember that for any angle, say A, we have 

cos2 A + sin2 A = 1 

we obtain the equation 

29 2a     2 L2 — L\      . 2 o . 2 L2 + L\ 
cosz - = cosz - cosz —- f- sir - sinz  

Z Z Z z z 
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We now make liberal use of the half-angle formulas 

„A     1 + cos A 
cos - = 

and 
sin — = 

2 

1 — cos A 

to simplify the preceding equation. We then solve the resulting 
equation for cos 6, which gives 

cos 9 = cos a cos L\ cos L2 + sin L\ sin L2 

This confirms Equation 4.10 which we obtained in Chapter 4 
using the rotation matrix method. 

Second, it also is possible to confirm our earlier results for 
angles ipi and ip2- To do this it will be helpful to define auxiliary 
angles A and B 

A   =   ip2-ipi 
B   =   ^2+ 01 

It is easy to verify that with these definitions we have 

B-A 

1p2     = 

2 
B + A 

With this notation, the equations we summarized above become 

6       A 
cos - cos — 

2       2 
9  .   A 

cos - sin — 
2       2 
6       B 

sin - cos — 
2       2 
0  .   B 

sin - sin — 
2       2 

a       Li2 — L\ 
cos — cos  

2 2 
.   a  .   L2 + Li 

sin — sin  
2 2 
a  .   Z/2 — L\ 

cos- sin —^- 

a  .   L2 + Li 
sin — sin  

2 2 

(9.18) 

(9.19) 

(9.20) 

(9.21) 
Li  o= X,-)L 

Great Circle Path 
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Now, dividing Equation 9.19 by Equation 9.18 gives 

A tan § sin ^±^ 
tan —   =    —j—r^— 

2 cos^f^- 

while if we divide Equation 9.21 by Equation 9.20 we obtain 

B tan f sin ^±^ 
tan —   =    *—r—jr-*— 

2 sin^f^ 

Finally, we need only to recognize that 

B-A 
tan ipi   =   tan  

2 
tan j — tan ^ 

~   1 + tan | tan j 

tan wo   =   tan  
2 

_     tan | + tan ^ 

1 - tan f tan ^ 

With use of the appropriate trigonometric identities, and the 
above expressions for tan ^ and tan ^ it is possible to simplify 
the expressions for tan ipi and tan ^2 to obtain 

, sin a cos L2 tan ipi   = 

tan ^2 

sin L2 cos L\ — cos L2 cos a sin Li 
sin a cos Li 

sin L2 cos L\ cos <r — cos L2 sin Li 

Note that these are exactly the expressions which we obtained 
earlier in Equations 4.11 and 4.12 from the rotation matrix 
method. 



9.6.   REASONS FOR THE SEASONS 263 

9.6    Reasons for the Seasons 

In the preceding sections we have explored the use of the quater- 
nion rotation operator in analyzing certain problems which mostly 
are of interest to those engaged in the aerospace industry.   In 
this final section we turn to a problem of quite a different na- The seasons are fixed by wisdom divine, 

The  slow  changing  moon  shows  forth 
God's design; 
The sun in its orbit his Maker obeys, 
And running his journey hastes not nor 
delays. 

1959 CRC Psalter Hymnal #207 

Plane 

Figure 9.5: Earth Equatorial and Ecliptic Planes 

ture, one which all of us experience day by day. The problem 
is: how the earth's orbit, and the earth's orientation in that or- 
bit relative to the sun, determine the change of seasons as we 
experience them — another interesting application of rotation 
operators. We shall assume at least some reader familiarity with 
terms such as, say, the equatorial plane and the vernal equinox, 
as represented in Figure 9.5.   Note specifically, that the fixed 
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reference frame, XYZ, is earth-centered with the X-axis (the 
intersection of the Equatorial and Eccliptic planes) is directed 
toward the constellation Aries. 

X A     ras Xj B 

Figure 9.5 
Seasons Model 

We will construct a rotation operator sequence which relates 
the earth equatorial and ecliptic planes. We will determine the 
number of daylight hours and the directions to the sunrise and 
sunset for any point P(\, L) on the earth surface, for any season 
of the year defined by the angle tt. The angle Q defines the di- 
rection to the Sun in the ecliptic plane from the Vernal equinox. 
In Figure 9.5 we begin the rotation sequence from the X-axis 
in the fixed reference frame XYZ. The XY-plane contains the 
earth equatorial plane. Recall, the X-axis lies in the intersection 
of the Equatorial and Ecliptic planes and is directed positively 
toward Aries (the direction of the Vernal equinox). The Z-axis 
of the reference frame is normal to the equatorial plane and is 
directed positively North. 

We begin by defining three rotation sequences which relate 
the various parameters shown in Figure 9.5. These parameters 
govern the geometry of the situation, and how this geometry 
changes with the Seasons. These sequences are based on the 
following three spherical n-gons: 

1. Sequence #1: Spherical Polygon - XSPAX 

2. Sequence #2: Spherical Trapezoid - (X)APSBA(X) 

3. Sequence #3: Spherical Triangle - XSBAX 

We will define the rotation sequence for each of these n-gons, 
and following this we will derive the equations which properly 
relate the various parameters of interest. The reader may wish 
to follow each rotation in these sequences as we did earlier in 
Section 4.6. 
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9.6.1    Sequence #1: Polygon - XSPAX 

rO<2XE)©®©€h 
Figure 9.6: Earth-Sun Rotation Sequence #1 

The 1st rotation in this sequence is about the X-axis through 
the angle t (approximately 23\ degrees), which is the angle be- 
tween the equatorial and ecliptic planes. 

The 2nd rotation is then about the new z-axis through the 
angle between the X-axis (Vernal equinox) and the Earth-Sun 

line, denoted by Q. This angle specifies the Season of the year. 

The 3rd rotation follows about the new x-axis through an 
angle a, such that the resulting y-axis is normal to the plane 
POS. Further, if we view the new frame as being centered at S, 
the new z-axis points away from the observation point P. 

The 4th rotation is then about the new y-axis through the 
angle 9, such that the new x-axis is the local vertical at P. 

The 5th rotation is about the new x-axis through an angle 
ijj, such that the new z-axis is directed North. Note, heading, V, 
is always positive — increasing clockwise, thus the rotation is -ip. 

The 6th is a rotation about the new y-axis through the angle 
L — the latitude of the observation point P. 

The 7th and final rotation about the z-axis, is opposite in 
sense to that of A, the longitude of the observation point P. The 
new frame then coincides with the original reference frame. 

Figure 9.5a 
Spherical Polygon 

The spherical polygon is redrawn 
here in the margin for reference as 
we step through the sequence of 
rotations. 

X A     (^       x7 

Figure 9.5 
Seasons Model 
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Figure 9.5b 
Spherical Trapezoid 

The spherical trapezoid is redrawn 
here in the margin for reference as 
we step through the sequence of 
rotations. 

Figure 9.5 
Seasons Model 

9.6.2    Sequence #2: Trapezoid - APSBA 

rOOGGGKSHSh 
Figure 9.7: Earth-Sun Rotation Sequence #2 

The 1st rotation in this trapezoidal sequence is taken about 
the Z-axis through the angle A, from the Vernal equinox to the 
longitude of the observation point P. 

The 2nd rotation is then taken about the new y-axis through 
the angle L — the latitude of the point P. Note the opposite 
sense here. The new x-axis is the local vertical at point P. 

The 3rd rotation is about the new x-axis through an an- 
gle ip such that the new zx-plane contains the Earth-Sun line, 
with the z-axis pointing toward S. Note again the opposite sense. 

The 4th rotation is about the new y-axis through the angle, 
-9, so that the new x-axis is directed along the Earth-Sun line. 

The 5th rotation is then taken about this new x-axis through 
an angle, a, such that the new z-axis at S again points North. 

The 6th rotation is then about the new y-axis (which is now 
parallel to the Equatorial plane) through the angle L3 — the 
latitude of the point S (on the Earth-Sun line). 

The 7th and final rotation is about the new z-axis through 
the angle As (opposite sense) which is the longitude of S mea- 
sured from the Vernal equinox. The new frame is now coincident 
with the original reference XYZ frame — and the loop is closed! 
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9.6.3    Sequence #3: Triangle - XSBAX 

rGnS©0€h 
Figure 9.8: Earth-Sun Rotation Sequence #3 

The 1st rotation in this triangular sequence is about the 
X-axis through the angle t such that the new xy-plane is the 
plane of the ecliptic. 

The 2nd rotation is then about the new z-axis through the 
angle Q. This angle (in the plane of the ecliptic) defines the 
Season by specifying the direction of the Earth-Sun line with 
respect to the reference frame X-axis (the Vernal Equinox). 

The 3rd rotation is about the new x-axis through an angle, 
a such that the new y-axis is parallel to the Equatorial plane. 

The 4th rotation is taken about this new y-axis through the 
angle Ls, which represents the Latitude of the Earth-Sun line. 

The 5th and final rotation is about the new z-axis through an 
angle As, which is the longitude of S (the Earth-Sun line) mea- 
sured from the Vernal equinox. Note that here the right-hand- 
rule sense is opposite the conventional sense of the measured 
longitude of S. As before, we indicate this fact by writing -As 

in Figure 9.8. This makes the final xyz-frame again coincident 
with the original XYZ reference frame. 

Figure 9.5c 
Spherical Triangle 

The spherical triangle is redrawn 
here in the margin for reference as 
we step through the sequence of 
rotations. 

Figure 9.5 
Seasons Model 
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9.6.4    Summary of Rotation Angles 

In our three foregoing closed-loop sequences we have used several 
angles, some of which are longitudes. It will be convenient to 
define some of these longitude angles with respect to the Vernal 
equinox (X-axis), rather than Greenwich zero. We must how- 
ever, carefully establish the relationship between these longitude 
angles. In summary we have 

A = Longitude of P wrt Vernal equinox (X-axis) 

L = Latitude of point P 

fi = Argument of Latitude of Earth-Sun line 

Xp = Longitude of P wrt Greenwich 

A0 = Longitude of Greenwich wrt the Vernal equinox 

L3 = Latitude of the Earth-Sun line 

Xs = Longitude of Earth-Sun line wrt Vernal equinox 

6 = Co-elevation of Earth-Sun line 

i = Inclination of equatorial plane (23| degrees) 

ip = Heading of Earth-Sun line, viewed from P 

In general, many of the above angles are functions of time. For 
example, if ue is the Earth rotation rate, then 

A = Xp — XQ + uet 

In like manner, if us is the Earth orbital revolution rate, and Qo 
is the initial value of Q then 

Cl = n0 + uat 

The foregoing model may well serve as the starting point for 
seeking the answer to many challenging questions in local celes- 
tial mechanics. In our present application, however, we choose 
to determine only the number of seasonal daylight hours for a 
specified location on the earth surface. That is, we specify values 
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for the angles SI, XP and L. Then, for 6 = \ (the condition for 
sunrise and sunset), we determine two values for the angles, A 
and V- The difference between the two A values (corresponding 
to sunrise and sunset) determines the number of daylight hours. 
The two values for if) give the directions relative to North, for 
sunrise and sunset. We shall now analyze Sequence #1 in con- 
siderable detail, for pedagogical reasons. The reader will then 
note the results obtained for sequences #2 and #3 come from a 
similar analytical methodology. 

9.6.5    Matrix Method on Sequence #1 
It is important to note that the sequence in Figure 9.6, repro- 
duced here for convenience, includes a rotation through an angle 
a. This angle a, in general, has little or no interesting geomet- 

In this application we use matrix 
rotation operators. We leave as 
a worth-while exercise to confirm 
the results obtained here, using 
quaternion rotation operators. 

Figure 9.9: Earth-Sun Rotation Sequence #1 

ric significance, but it is required to close the sequence.   The 
result obtained in Section 4.2.3 allows us to begin this loop with 

r©O®G©O0i 

We again emphasize that the prod- 
uct of a closed ordered sequence of 
rotation operators is equivalent to 
the identity transformation. 

Figure 9.10: Begin Sequence #1 with a-Rotation 

the a-rotation, as illustrated in Figure 9.10. We notice that the 
a-rotation is about the local x-axis. It follows, if we input the 

A sequence of rotations may be 
closed iff it represents an iden- 
tity. The operations represented 
by such a sequence, opened at any 
point, takes any vector introduced 
at that point, into itself. 
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vector i = coZ[l,0,0], we may eliminate the a-transformation 
from the sequence, as shown in Figure 9.11. 

'-©00000-' 
z        x 

Here we use Equations 3.1, 3.2, 
and 3.3 to write Equation 9.22 in 
matrix form. Computing the ma- 
trix product gives the indicated re- 
sult. 

Figure 9.11: a Eliminated in Opened Sequence #1 

The product of rotations, ordered according to the sequence 
of Figure 9.11, takes the vector i = co/[l,0,0] into itself, so we 
may write 

Tn,zTtjXTXzTLtyTyxToty\ = i 

If we pre-multiply, in turn, both sides of this matrix equation by 
TQZ, T/JX, T\Z, and finally by T[y, we get the matrix equation 

Ti,xTe,yi   =   Tl,yTx,zTlxT^zi (9.22) 

We solve this equation, where the indicated sequence operates 
on the vector i, using matrix methods. Equation 9.22 produces 
equivalent column matrices, that is 

COS0 

— sin tp sin 6 
cos tj) sin 8 

cos L cos A cos Q + cos L sin A sin fi cos i + sin L sin Cl sin i 
— sin A cos f2 + cos A sin Q, cos i 

cos L sin Q. sin i — sin L sin A sin Vt cos t — sin L cos A cos Cl 

If we equate the two first elements we get 

cos 9   =   cos Q, cos A cos L + sin Vt sin t sin L + 

sin 0, cos i sin A cos L 

Dividing their 2nd elements by their 3rd gives (9.23) 
tan Q, cos t cos A — sin A 

tan^>   = 
tan fi(cos i sin A sin L — sin i cos L) + cos A sin L 



9.6.   REASONS FOR THE SEASONS 271 

For \L\ < | — t, a necessary condition for sunrise or sunset is 
that 9 = f, that is, cos0 = 0. We may then write 

sin Q cos L sin A + cos fi cos A .       . 
tanL   = r-pr--  (9-24) sm i I sm t 

The angle t is 23| degrees and the angle SI is chosen to specify 
the season. Then for some specified latitude \L\ < f - i on the 
earth, we may obtain sunrise and sunset values for A. This we 
do by rewriting Equation 9.24 as a quadratic equation in sin A, 
which gives 

sin2 A + 2B sin A - C   =   0 
tan2 Q. sin t cos t tan L 

where        B   = 

and        C   = 

from which we may write 

1 + tan2 Q, cos21 
1 — tan2 fi sin21 tan2 L 

1 + tan2 Q cos21 

sinA   =   -B ±VB2 + C 

that is A   =   arcsin(-B ± \JB2 + C) 

These values for A are then used in Equation 9.23 to compute 
the corresponding values for heading, ip, which are the directions 
to sunrise and sunset. 
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9.6.6    Matrix Method on Sequence #2 
In the analysis of Sequence #2 we will again solve for cos 8 and 
tanip as was done in Sequence #1. This time, however, the re- 
sults are expressed in terms of the meaningful latitude/longitude 
parameters. The product of the rotation matrices, ordered ac- 
cording to the rotation sequence of Figure 9.6.5, takes the vector 

Figure 9.12: Season Sequence #2 Simplified 

By the notation Te,v we mean a i = COl[l, 0, 0] into itself SO We Write 
rotation through an angle 0 about 

WWW =« (9-25) 
where the angle a = Xs — A. Then pre-multiplying both sides of 
the matrix equation 9.25 by T^xTetV we get 

WA-v* = T+jTej (9.26) 

Solving matrix Equation 9.26 yields the following relationships 

cos0   =   cos L cos a cos Ls + sin L sin Ls     (9.27) 

sin 6 sin t/;   =   cosLssin<r (9.28) 

sin 9 cos V>   =   sin Ls cos L — cos Ls cos a sin L     (9.29) 

Dividing Equation 9.28 by Equation 9.29 we get 

cos Ls sin a .   nn. 
tanV   =   -r—T z —T ^-p 9.30 

sm Ls cos L — cos Ls cos a sin L 

Once again we have solved for cos0 and tan^, except this time 
in terms of Latitude and Logitude parameters. 

Tit rrt 
e,y ~ i-*.y 
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9.6.7    Matrix Method oil Sequence #3 

The seasons axe conveniently defined in terms of the direction 
of the Earth-Sun line in the ecliptic plane. The direction of 
the Earth-Sun line in Figure 9.5 is defined by the angle fi in 
the Ecliptic Plane relative to the Vernal equinox (the positive 
Reference X-axis). The angle L, which relates the Ecliptic and 
Equatorial planes, measures 23* degrees. In Figure 9.5 we con- 
sider the following sequence of rotations which relate these two 
planes in the spherical triangle XSBAX. As before, we open 
the closed sequence of Figure 9.8 at the rotation a, and input the 

y z x z 

Figure 9.13: Sequence #3 Simplified 

vector i = col[l,0,0] at this point. This results in the sequence 
shown in Figure 9.13. From the matrix equation indicated by 
this sequence we get 

(9.31) 

(9.32) 

(9.33) 

(9.34) 

cos Q = cos As cos Ls 

sin Ls = sin i sin Q. 

tan Xs = cos i tan Q 

tan Ls = tan i sin Xs 

These equations suggest several interesting investigations.  For 
example, the third equation allows us to write 

tan H = tan(ft - Xs) = - 
tan ft-tan As       (1 - cost) tan Q, 

. + tan As tan Q      1 + cos i tan2 tt 

In Figure 9.12 the parametric plot of the points (Ls>/*) as the 
angle Q, = 0 —► 2ir produces a figure called an analemma. It is 
closely related to the 'figure-eight' which appears on most globes 
representing the earth. 

L radians 

Figure 9.12 
Seasonal Analemma 
Plotted using Mathematics© 
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L radians 

Figure 9.12 
Seasonal Analemma 
Plotted using Mathematics© 

In summary, the equations from the three sequences are: 

For sequence #1 we have: 
cos 6   =   cos Q cos A cos L + sin Q sin i sin L + 

taxiip   = 

sin Q cos t sin A cos L 
tan 0, cos i cos A — sin A 

cos A sin L + tan fi(cos i sin A sin L — sin t cos L) 

For sequence #2 we have: 

cos 6   =   cos Ls cos <r cos L + sin Ls sin L 

9 simp   =   cos Ls sin a 

in Ls cos L — cos Ls cos a sin L 

sin 

sin 0 cos ^ —  — a 

cos Ls sin a cos Ls sin cr 
tani/>   =   -7-7 f z ~ 

sin Ls cos L — cos Ls cos cr sin 
sincr 

tan Ls cos L — cos a sin L 

For sequence #3 we have: 

cos Cl   =   cos As cos L3 

sinLa 

tanAs 

tanLs 

^s   =   sin t sin Q 

=   cos t tan fi 

=   tan t sin As 

The parametric plot of the points (L3, ß) for Q, = 0 
duces a figure-eight type figure called an analemma. 

2n pro- 

tan fi   = tan(fi — Aa) 
tan Q — tan Xs 

1 + tan As tan 0 
(1 — cost) tan Q, 

1 + cos i tan2 f2 
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9.7    Seasonal Daylight Hours 

In this section we will derive an expression which defines the 
number of hours of daylight as a function of the day of the year. 
In sequence #2 we derived the expression 

cos 9   =   cos L3 cos a cos L + 

sin L3 sin L 

We now replace the angle a = X3 - A by a - t, where t is the 
term which accounts for the earth rotation rate. We include this 
in the expression for a and write 

cos0   =   cos Ls cos (cr — £) cos L + sin Ls sin L 

=   (cos a cos t + sin a sin t) cos L3 cos L 

+ sin Ls sin L 

It is convenient to let t = 0 at sunrise (9 = f), which means 
sin L3 sin L 

cos a   = 
cos L„ cos L 

and 

sin a   = 
y cos2 L3 cos2 L - sin2 L3 sin2 L 

cos L3 cos L 

^(Sum)(Diff) 

cos L3 cos L 
where    Sum   =   cos Ls cos L + sin Ls sin L 

and   Diff  =   cos L3 cos L - sin L3 sin L 

Then    cosö   =   sinty'cos(L + Ls) cos(L - Ls) 

+(1 — cos t) sin L sin Ls 

Finally, we may write 

9(t)   =    arccos[sin tJcos(L + L3) cos(L - Ls) 
7T 

+(1 — cos t) sin L sin L3) 

and    /0   =    90 - 9 — Elevation angle to the Sun 

The angle 

9 = ir/2 =*• cos 9 = 0 

defines the necessary condition for 
sunrise and sunset. For this con- 
dition the line-of-sight to the Sun 
is tangent to the earths surface for 
the observation point P, and 

COSCT 

and    L, 

— tan L tan L, 

arcsin(sinisinfi) 
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Here the following constants axe defined: 
L   =   Latitude of point of interest on Earth 

Ls   —   arcsin[sin t sin Q] 
i   =   angle between equatorial & ecliptic planes 

=   23.5   degrees 
0   =   Earth-Sun line wrt Vernal Equinox 

A plot of ß(t), which is the Sun elevation angle over the hours 
in one day at the peak of winter, is shown in Figure 9.13 for an 
observer at latitude 45 degrees. 

Winter  ft = 270° 
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Figure 9.13: Daylight Hours in Peak of Winter 
Plotted using Mathematical 
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Figure 9.14 shows how the daylight hours vaxy over the days 
and seasons of the year. 

50       100      150      200     250      300      350 
Days from Vernal Equinox 

Figure 9.14: Daylight Hours for each Day of Year 
Plotted using Mathematica© 

From this and the previous work we have done so far it should 
be clear that rotations, whether we use rotation matrices or 
quaternions, should also be quite useful in exploring the rela- 
tionships which hold in spherical trigonometry. This is indeed 
the case, and we turn to this substantial subject in the next 
chapter. 
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Chapter 10 

Spherical Trigonometry 

10.1    Introduction 

As an additional application of the theory of the quaternion 
rotation operator, as we have thus far developed it, we turn 
in this chapter to the development of some results in spheri- 
cal trigonometry. In particular, using certain sequences of the 
now familiar quaternion rotation operator, we analyze certain 
relationships which hold in spherical triangles, that is, triangles 
which lie on the surface of a sphere. In so doing we shall derive 
some of the well-known relationships and identities in spherical 
trigonometry. 

In this analysis we shall use sequences of both matrix ro- 
tation operators and quaternion rotation operators. The two 
different rotation operators may then be compared and evalu- 
ated, particularly with respect to their relative computational 
efficiency. Use of both operators often allows us also to deter- 
mine where and in what way, in some sense, the two operators 
complement each other. 

279 
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We use the letter D here rather 
than the letter C simply because 
the upper and lower cases of the 
letter C have the same form, and 
may cause some confusion; not so 
with the letter D. 

10.2    Spherical Triangles 

Consider three distinct points A, B and D which lie on the 
surface of a unit sphere. We specify a unit sphere, that is, a 
sphere of radius 1, merely so that lengths of great circle arcs on 
the surface of the unit sphere are numerically the same as the 
radian measure of the central angle subtended by that arc. 

Figure 10.1: Spherical Triangle 

We may, without loss of generality, choose an XYZ coordi- 
nate frame (right-handed, as usual) such that the point A is on 
the Z-axis, and the point D lies in the YZ plane. In order to 
have a spherical triangle, on the surface of the sphere, with the 
points A, B and D as its vertices, the point B, of course, should 
not lie in the YZ plane. Let each of the pairs of these points be 
connected by great circle arcs, as shown in Figure 10.1. We note 
that great circle arcs on the surface of a sphere are equivalent 
to straight line segments in a plane, in the sense that the short- 
est distance between any two points on the sphere is measured 
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along the great circle arc joining the two points. Further, it is 
helpful to note that the plane which contains any great circle 
arc also always contains the center of the sphere. 

We designate the great circle arc which connects the points 
B and D by a, which is equal to the radian length of that arc 
on our unit sphere. Similarly, b is the great circle arc connecting 
the points A and D, while d is the great circle arc connecting 
points A and B. These three arcs, a, b, and d, are the sides of 
the spherical triangle we wish to consider. Each of these arcs 
lies on the intersection of the sphere with the plane which con- 
tains the two endpoints of that arc and the center of the sphere. 
The central angles LAOB, LBOD and LDOA correspond re- 
spectively to the sides d, a and b. Because we have chosen to 
work on the surface of a unit sphere, the lengths d, a and b of 
the sides of the triangle are the same as the radian measure of 
the central angles LAOB, LBOD and LDOA, respectively. The 
three interior angles of the spherical triangle at each vertex, A, 
B and D, we designate a, ß and 6, respectively. 

10.3    Closed-loop Rotation Sequences 

Our analysis of the spherical triangle ABD proceeds in terms of 
a sequence of rotations in R3, about appropriate axes, through 
the three interior angles a, ß and S, and the opposite three sides 
or central angles a, b and d. These angles, properly ordered, de- 
fine the six rotations in an identity sequence. The concatenation 
of these six rotations in the sequence is closed, in the sense that 
the initial coordinate frame, subjected to this sequence of rota- 
tions, begins and ends with the same frame orientation. This 
simply says that the product of the rotations in this sequence is 
the identity, an idea we have used before. Hence the term closed 
or closed-loop rotation sequence. 

We emphasize here that all trans- 
formations are rotations; that is, 
linear translations of a frame are 
not relevant in our present consid- 
eration. Therefore, that we show 
the origin of a frame at the ori- 
gin of the reference frame, or at a 
point on the surface of the sphere 
is not important. It is the orien- 
tation of the frames that is impor- 
tant. 
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In the analysis which follows it is 
convenient that we define 

7 = 7T + a 

as we shall see. 

In what follows, we will analyze in considerable detail the 
six-rotation closed-loop sequence defined in Figure 10.2. Clearly, 
this sequence involves the parameters we have assigned to the 
spherical triangle ABD.   Further, all of the parameters (the 

Y= 7t+a 

Notation 

e- 
As in Chapter 4, this symbol rep- 
resents a rotation about the y-axis, 
through an angle a. The minus 
sign means the rotation direction, 
as determined by the right-hand 
rule, is opposite the sign of the an- 
gle a, whatever the convention be 
that determined this sign. 

Figure 10.2: Rotation Sequence 

three interior angles a, ß and 6, and the central angles a, b and 
d) which characterize the spherical triangle ABD are positive. 
The signed symbol in each circle represents the magnitude and 
direction of the frame rotation. The axis about which this par- 
ticular rotation occurs is indicated below the circle. 

A coordinate frame, always designated xyz, which is initially 
coincident with the reference frame XYZ, is now subjected to 
the ordered sequence of rotations involving these six angles, in 
turn. 

We now describe successive rotations in the sequence, and 
illustrate each in an accompanying figure. The reader should 
take care to note that the rotating coordinate frame xyz indeed 
begins and ends with an orientation cooincident with that of the 
fixed reference frame XYZ. It is for this reason we tie the two 
ends together, that is, we close-the-loop on this sequence. This 
rotation sequence is easy to follow, since it simply goes around 
the spherical triangle ABD in an orderly fashion. Note, however, 
that we have chosen the direction ADB, around the triangle — 
merely because most of the rotations are then positive. 
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The first rotation in the sequence, denoted i%6, is about the 
x-axis through the central angle lAOD, which represents the 
side AD, labelled b on the triangle.   Notice that the rotation 

Remember, all rotations are taken 
in the 'right-hand-rule' sense 

Figure 10.3: First Rotation in the Sequence 

direction, in the right-hand rule sense, is negative. Hence, the 
transpose. The magnitude of the rotation is such that the z-axis 
of the rotation frame, which initially contained  vertex A, now 

Spherical Triangle 

Y = rc+(X 

-^>GHSH3HSK 

Figure 10.4: First Rotation in the Sequence 

contains the vertex D, as shown in Figure 10.3.  We illustrate 
this first rotation of the sequence in Figure 10.4. 
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The second rotation in the sequence, denoted Rzj, is about 
the new z-axis through the angle 6, such that the new yz plane 

Spherical Triangle 
Figure 10.5: Second Rotation in the Sequence 

contains the side a of the triangle. This rotation is illustrated 
in Figure 10.5. Notice that the rotation direction, in the right- 
hand rule sense, is positive.     This 6 rotation and its place in 

y=7i+a 

Figure 10.6: Second Rotation in the Sequence 

the overall sequence of rotations is illustrated in Figure 10.6. 
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The third rotation, ßI]0, is about the new x-axis through 
the angle a, such that the newly rotated z-axis now contains the 

Figure 10.7: Third Rotation in the Sequence 

vertex B of the triangle, as shown in Figure 10.7. Figure 10.8 

Spherical Triangle 

Figure 10.8: Third Rotation in the Sequence 

merely shows where this rotation occurs in the sequence. 
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The fourth rotation in the sequence, denoted Rz<ß, is about 

Spherical Triangle 
Figure 10.9: Fourth Rotation in the Sequence 

the new z-axis through the angle /?, such that the new yz plane 

7 = 7l+a 

-^XEH2K!>G>C> 
Figure 10.10: Fourth Rotation in the Sequence 

now contains the side d of the triangle ABD. Figure 10.9 illus- 
trates this fourth rotation and Figure 10.10 indicates its place 
in the sequence. 
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The fifth rotation, denoted R\.d, is about the new x-axis 
through the angle d such that the new z-axis again coincides 

Figure 10.11: Fifth Rotation in the Sequence 

with the reference Z-axis, and hence contains the vertex A  of 

Spherical Triangle 

Y = 7i+a 

-(IKSHSKMKD^ 
Figure 10.12: Fifth Rotation in the Sequence 

the triangle, as shown in Figure 10.11. As was the case with 
the first rotation, this rotation direction (in the rh-rule sense) is 
negative. Hence, the transpose and the minus-d. Figure 10.12 
shows where this rotation occurs in the sequence. 
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The sixth and final rotation in the sequence is about the z- 
axis through an angle 7 = a + IT. The reader should carefully 
check Figure 10.13 merely to confirm that after this rotation the 

Spherical Triangle 
Figure 10.13: Sixth Rotation in the Sequence 

rotated xyz frame once again coincides with the original XYZ 

y=n+a 

-<^X2Ki>0<i>- 
Figure 10.14: Sixth Rotation in the Sequence 

reference frame. The final yz plane is therefore again coinci- 
dent with the YZ plane and contains both the vertex A and the 
side 6 of the triangle. Note also that the composite transforma- 
tion represented by this sequence of rotations is equivalent to 
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the identity. Therefore, as again illustrated in Figure 10.15, we 
'close-the-loop' on this entire rotation sequence. 

y=n+a 

Figure 10.15: Closed-Loop Rotation Sequence 

We use this fact, that the product of these six rotations is the 
identity, to find relationships between the various angles which 
characterize a spherical triangle. We first analyze this sequence 
of rotations algebraically using matrices, and follow that with 
an analysis using the quaternion operator. 

10.4    Rotation Matrix Analysis 

For each of the rotations in the closed sequence of Figure 10.15 
we have a corresponding rotation matrix. The properly ordered 
product of these matrices must also, of course, be the identity 
matrix. So we may write 

RyRdRßRaRsRb = / (10.1) 

We now analyze this matrix equation 10.1 in order to de- 
termine some relationships between these six angles in a spher- 
ical triangle. By suitable pre- and post-multiplications, we may 
write 

The matrices used in this sec- 
tion were derived in Chapter 3, as 
Equations 3.1 and 3.3. 

RbRs^-a = RjRdRß (10.2) 



290 CHAPTER 10.  SPHERICAL TRIGONOMETRY 
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M = N       =* 

We define the matrix 

M = RöR'gRl 

which, more specifically, is the product 

(10.3) 

10 0 
0    cos b    sin b 
0   — sin b   cos b 

cos 8   — sin 8   0 
sin 8     cos 8    0 

0 0       1 

10 0 
0   cos a   — sin a 
0   sin a    cos a 

In like manner, we define the matrix 

N = RyR^Rß 

which more specifically is the product 

(10.4) 

cos 7     sin 7   0 
— sin 7   cos 7   0 

0 0      1 

10 0 
0   cos d   — sin d 
0   sin d    cos d 

cos/?     sin/?   0 
-sin/?   cos/3   0 

0 0      1 

We now compute the matrix products for M and N in order to 
get the detailed expressions for their respective elements. And, 
since matrices M and N are equal, we equate their correspond- 
ing elements m^ and n{i. This results in nine equations which 
together define the relationships between the six angles which 
comprise every spherical triangle: 

mu =   cos<5 =   sin a cos d sin/? -cos a cos ß 
mi2 =   sintfcosa   =   cos a sin ß + sin a cos d cos/? 
rai3 =   sin a sin 8   = sin a sind 
m2i =   cos&sin<5   =   sin a cos /? — cos a cos d sin /? 
^22 =   cos 6 cos 8 cos a + sin b sin a = 

sin a sin /? — cos a cos d cos /? 
77123 =   sin&cosa   —   cos 6 cos 5 sin a = cosasind 
m31 =   sin b sin 5    = sind sin/? 
m32 =   cosfesino   —   sin&costfcosa = sindsin/? 
m33 =   cosd =     sin a cos <5 sin b + cos a cos b 

nu 

"21 

"22 

"23 

"31 

"32 

"33 
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We may now use these equations to find some well-known 
identities in spherical trigonometry. For example, from the fact 
that rai3 = ni3 and ra3i = n3i, we get the familiar expressions 

sin a      sin b      sin d 

sin a     sin ß     sin 6 
(10.5) 

Further, the equalities ra33 = ra33 and mn = «n give us the two 
companion cosine laws of spherical trigonometry: 

cos d — sin a cos 6 sin b + cos a cos b (10.6) 

cos 6 = sin a cos d sin /? — cos a cos /? (10.7) 

10.4.1    Right Spherical Triangle 

For a Right Spherical Triangle (6 = 7r/2) these identities become 

sin a      sin b 
sin d =   . .   . 

sin a     sin p 

tan a cos d tan ß = 1 

cos d = cos a cos b 

(10.8) 

(10.9) 

(10.10) 

Other identities can be found using various combinations of the 
other elements of M and N. 

Spherical Triangle 

10.4.2    Isoceles Spherical Triangle 

For an Isoceles Spherical Triangle we take a 
Using the foregoing matrix identities we get 

ß and a = b. 

sin a = 
1 — cos d 
1 — cos 6 

and   sin a = 
1 + cos 6 
1 + cos d 

(10.11) 

Other identities may readily be derived in this fashion. However, 
we turn next to the quaternion approach. 
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Spherical Triangle 

10.5    Quaternion Analysis 

We now analyze the same spherical triangle using quaternions. 
According to Theorem 5.4, the product of the quaternions as- 
sociated with each of the rotations shown in Figure 10.16 must 

y=n+a 

Figure 10.16: Closed-Loop Rotation Sequence 

also be equivalent to the identity, as before.  This means that 
we must have 

e = QxfiQzMx.aQzßq^dQz^ = ! (10.12) 

By appropriate pre-multiplications, we may write 

P = Qz,ßQx,dQz,y = Ql<aQ*z,sQx,b = q (10.13) 

Here, for convenience we designate the left-hand side and the 
right-hand side of Equation 10.13 as p and q, respectively. 

The quaternions for each rotation in this sequence are given 
by 

qXyb   =   cos-+isin- 

6     ,   •   6 
qZi6   =   cos- + ksin- 

a     . .   a 
qXta   =   cos- + isin- 

qzß   =   cos- + ksin- 
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d    . .   d 
qx,d   =   cos-+ ism- 

7 7 qzn   =   cos- + ksin- 

Since the angle 7 = IT + a we may write the quaternion 
expression related to the rotation 7 about the z-axis as a function 
of the desired interior angle rotation a, as follows 

9*,7   =   cos^ + ksin- 

=   - sin - + k cos - (10.14) 

We now compute the two quaternion products indicated in 
Equation 10.13 for both p and q. These are 

p   =   po + ipi + jp2 + kp3 = qzßq*x4qza 

3 ß.,      d     .      ds/     .   a     .        a. 
=   (cos ^ + ksin -)(cos - - ism -)(- sin - + kcos -) 

q   =   q0 + iqi + m + kg3 = Ql,aQ*z,sQx,b 
a     . .   a..     6 .   6.,      b b. 

=   (cos - - ism -)(cos - - ksm -)(cos - + ism -) 

Spherical Triangle 
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Using our definition of the quaternion product, the elements 
of the quaternion p are given by 

.   ß       d       a 
sin — cos — cos — 

2       2       2 

Spherical Triangle 

0 d . a 
Po = — cos — cos - sin — y 2       2       2 

d      a + ß 
—   — cos - sm —-— 

2 2 
ß . d . a . ß . d a 

Pi = cos — sm - sm — — sm — sm - cos — y 2      2      2 2      2       2 
.   d .   a-ß 

=   sm - sm —-— 
2 2 

.   ß .   d .   a ß .   d      a 
pz   =   sm - sm - sm - + cos - sm - cos - 

. d       a-ß 
=   sm - cos  

2    2 
ß       d      a      . ß       d       a 

PA   =   cos — cos - cos — — sin — cos - cos — 
2       2       2 2       2       2 
d       a + ß 

=   cos — cos —-— 
2 2 

and the elements of the quaternion q are 

9o   = 

Qi   = 

qi   = 

a      6      b      .   a      6      b 
cos - cos - cos - + sin - cos - sm - 

2       2       2 2       2      2 
6       a — b 

cos - cos  
2 2 
o       6 .   b      .a      6       b 

cos - cos -sin-- sin — cos - cos - 
& £ A 2t £ Ji 

8  .   a — b 
cos - sm 

2 
.   a  .   6       b 

sin - sin - cos - 
2      2       2 

93 

2 
a  .   6  .   b 

— cos — sm - sin - 
2      2      2 

.   6  .   a+b 
— sin - sm  

2 2 
.   a  .   6  .   b a      6       b 

sm - sin - sm - - cos - sin - cos - 

.6      a + b 
— sm - cos —-— 

2 2 
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The indicated triple quaternion products define each element of 
the composite quaternion p as functions of the rotations a, ß 
and d. Similarly, the elements of the composite quaternion q 
are functions of a, b and 8. Since the two resulting compos- 
ite quaternions p and q are equal, equating their corresponding 
elements yields the following relationships. 
Equating q0 and pQ gives 

d  .   (a + ß) _cos_sin___ 

Equating qi and pi gives 

.   d  .   (a-ß) 
8m28m—2  

Equating <?2 and p2 gives 

.   d       (a-ß) 
sin_cos___ = 

Equating g3 and p3 gives 

d      (a + ß) .8       (a + b) 
cos - cos —-— = - sin - cos —-— 

8       (a-b) 
cos - cos —-— 

6  .   (a-b) 
cos_sm__ 

6  .   (a + b) 
— sin - sm —-— 

2 2 

(10.15) 

(10.16) 

(10.17) 

(10.18) 

The preceding equations may now be used to derive several 
well-known identities which hold for spherical trigonometry. The 
sine law, for example, may be obtained as follows. If we multiply 
Equations 10.15 and 10.17, and use an appropriate trigonometric 
identity, we may write 

sin d sin a + sin d sin ß   =   sin 6 sin a + sin 6 sin b 

If we multiply Equations 10.16 and 10.18 we may obtain the 
expression 

Spherical Triangle 

sin d sin a — sin d sin ß   =   sin 8 sin a — sin 8 sin b 
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Spherical Triangle 

If we now add and, in turn, subtract these expressions we easily 
obtain the well-known sine law 

sind     sin a      sin 6 
sin 6     sin a     sin ß 

As another example, if we square and add Equations 10.15 
and 10.18, and make good use of the half-angle formulas 

•   2* sin -   = 

cos 
e 

1 — cos 6 

l+cos0 

we obtain the cosine law 

cos d   =   cos a cos b + sin a cos 8 sin b 

If we do the same thing with Equations 10.15 and 10.16 we 
obtain the analogous cosine law for 6 

cos 6   =   sin a cos d sin ß — cos a cos ß 

Other well-known identities may also be obtained. For example, 
dividing equation 10.15 by equation 10.18 gives 

(a + ß)        6     cosi(a-fr) 
tan -—-—- tan - = 4-, -f 

2 2     cosUa + b) 
(10.19) 

and dividing equation 10.16 by equation 10.17 gives 

(a-ß)        6     sin^(a-6) tan      n       tan - = -r-£ -f 
2 2     sm|(a + 6) 

Dividing equation 10.17 by equation 10.18 gives 

cosi(a — ß)      tan^(a + 6) 

(10.20) 

cos I (a + ß) tan |d 
(10.21) 
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and dividing equation 10.16 by equation 10.15 gives 

sin|(a-/3)      tan|(a-ft) 

sin\(a + ß) t&n^d 
(10.22) 

In some mathematical handbooks the two preceding identities 
are known as Napier's Analogies, which are useful in solving for 
certain unknown quantities in the spherical triangle, given cer- 
tain other information about the triangle. 

Finally, dividing equation 10.20 by equation 10.19 gives 

tan |(a - fi) _ tan \(a-b) 
(10.23) 

tan|(a + /3)      tan|(a + 6) 

This identity is known in spherical trigonometry as the law of 
tangents. Note that equation 10.23 is independent of the mag- 
nitude of one of the three angles and its associated opposite 
side. 

10.5.1    Right Spherical Triangle 

We note finally some special cases for these identities, namely, 
cases in which 6 = TT/2. For the resulting right spherical triangle 
the equations which were derived using the quaternion operator 
become 

{a + ß)      cosi(a-6) 
tan 

tan 

2 

(a-ß) 

cos I (a + b) 

sin | (a — b) 

(10.24) 

(10.25) 
2 sin±(a + 6) 

From these equations we now solve for a and ß independent 
of the other.   If we let 

S = a + ß and D = a-ß 

S        D i a        S        D 

a=- + - and ß = - - - 

Spherical Triangle 
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Then      tana   =   tan(-S+-Z>) 

tan \ S + tan \ D       tana 
1 — tan 15 tan |Z)      sin b 

and      tan/?   =   tan(-5' — -D) 

tan \S — tan |JD      tan b 

1 + tan ^S t&n ^D     sin a 

10.5.2    Isoceles Spherical Triangle 

For an Isoceles Spherical Triangle we take a = ß and a = b. 
Then using the foregoing identities which were derived using 
the quaternion rotation operator the reader is invited to show 
that 

d      . 6 
tan — =sina sin a tan - 

2 2 
Furthermore, for an isoceles right triangle 

d 
tan - = sin a sin o 

2 

No doubt much more could be done along these lines. We 
simply remark that in this chapter we have amply demontrated 
that both matrix and quaternion rotation operators are indeed 
useful in solving problems related to the spherical triangle. 
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10.6    Area and Volume 

Before we conclude this chapter on spherical trigonometry we 
derive expressions for the area of a spherical triangle and the 
volume of a volume segment of a sphere which is bounded by 

Rotation   a   about OA Rotation   ß    about OB 

Figure 10.17: Great-Circle Double-Lune Rotations 

a spherical triangle on the surface of the sphere and the radial 
lines to the vertices of the triangle. Although these derivations 
do not directly involve quaternions they do answer interesting 
questions relating to spherical triangles. 

First, consider the great circle which contains vertices of the 
spherical triangle, say A and B. A rotation of this great circle 
about the diameter which contains point A, through an angle a 
generates a double lune whose area is equal to 4a. This result is 
easy to verify: 

A double lune area is linear with angle and it clearly 
is equal to Air (the area of a unit sphere) if the angle 
of rotation is IT. QED 

Central   Volum»   Segment 

Area and Central Volume 
Regions of the Sphere 
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Spherical Triangle 

We now rotate great-circles on the unit sphere about diameters 
defined by OA, OB, and OD, through angles a, ß, and 6, re- 
spectively. The rotation a generates a double-lune whose area 
is equal to 4a. This generated area includes twice the area A of 
the spherical triangle (see Figure 10.17). 

A similar great-circle rotation through the angle ß about the 
diameter which contains the vertex^ B generates a double-lune 
area equal to Aß. This double-lune area also contains twice the 
area A. Similarly, the third great-circle rotation through the an- 
gle 6 about a diameter which contains the vertex D, produces a 
double-lune which again includes twice the area A of the spher- 
ical triangle. These last two rotations through the angles ß and 
6, both include double the area of the spherical triangle — a 
total excess equal to 4 x (the area A of the spherical triangle). 

In summary, the sum of the total area covered by each of 
these three great-circle double-lune rotations is 

4-K + 4A 

therefore,     A 

= 4{a + ß + S) 

- (a + ß + 6-n) 

= area of a triangle on a unit sphere, or 

= R2(a + ß + 6-7r) 

= the triangle area on a sphere of radius R. 

Using very similar constructions and arguments it is not dif- 
ficult to show that the volume bounded by a spherical triangle 
and the three radii from the origin to the three vertices is 

V = \(a + ß + 6-Tr)R3 

o 



Chapter 11 

A Quaternion Process 

11.1    Introduction 

In this chapter we describe a system which uses electromag- 
netic dipole fields generated at some point fixed in one body 
and detected at some point fixed in a remote body. Our pur- 
pose is to describe a process which measures the relative position 
and/or orientation between the two independent bodies. More 
precisely, we describe a six degrees-of-freedom transducer which 
completely defines how two independent relatively remote bod- 
ies are situated with respect to each other. 

Three essential components comprise this system: (1) a Source 
(sometimes called a Radiator) which is fixed in one body and 
which generates electromagnetic fields; (2) a similar compatible 
Sensor which is fixed in some relatively remote body and which 
detects the fields generated by the Source; and (3) a Processor 
whose function is to correlate the Source and Sensor signals. 
Given these signals, this system determines the relative position 
and orientation between the two independent bodies. We now 
describe the spatial situation geometrically, define appropriate 
mathematical models for the System components, and finally 
derive the required process algorithms. 

SOURCE 
Body 1 Frame 

Si 

ACTUAL 
INPUT ßi 

Relative Position 
and Orientation 

between 
SOURCE & SENSOR 

SENSOR 
Body 2 Frame 

SZE 
PROCESSOR 

sz 
COMPUTED 
OUTPUT Q o 
Relative Position 

and Orientation 
between 

Body 1 & Body 2 

Figure 11.1 
System Block Diagram 

301 
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Typically, the System components are distributed as illus- 
trated in Figure 11.1. All six degrees-of-freedom, i.e., the three 
translation parameters (a,ß,R) and the three rotation parame- 
ters (il>,0,<t>) are determined in the process.  These six degrees- 

Remote Body 
Orientation is 
y, 6, and <|> 

Figure 11.2: Six Degrees-of-Freedom 

of-freedom are illustrated in Figure 11.2. They define how two 
independent bodies are situated relative to each other. 
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A three-axis electromagnetic dipole Source is fixed in and 
represents the frame of BODY 1. This Source generates a time- 
multiplexed sequence of variously polarized electromagnetic fields 
which are detected by a similar three-axis dipole Sensor. This 
Sensor in like manner is fixed in and represents the remote 
BODY 2 frame. The fields (the S{ in Figure 11.1) which are 
generated by the Source and the corresponding set of signals 
detected by the Sensor (the S0 in Figure 11.1) are correlated by 
the Processor. The result is a precise measure of the relative 
position and orientation between the two independent bodies. 

Using both matrix and quaternion methods, we will derive al- 
gorithms which correlate the sensed data and the known source 
excitation sequence. First, however, we describe the electro- 
magnetic field structure and introduce an important geometric 
property of the coupling between the Source and the Sensor. 

11.2    Dipole Field Structure 

A simple coil excited by an electric current generates a space- 

Figure 11.3: Simple Coil EM Field Structure 

filling electromagnetic field. In free-space this EM field has a 
polar axis of symmetry which is normal to and centered in the 
plane of the coil.   This dipole magnetic field has the familiar 

SOURCE 
Body 1 Frame 

Si 

ACTUAL 
INPUT Q; 

Relative Position 
and Orientation 

between 
SOURCE & SENSOR 

SENSOR 
Body 2 Frame 

\7s7 

PROCESSOR 

5Z 
COMPUTED 
OUTPUT o 0 
Relative Position 

and Orientation 
between 

Body 1  & Body 2 

Figure 11.1 
System Block Diagram 
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torroidal structure filled with concurrent roughly circular flux 
lines all issuing from and returning to the plane circular area 
enclosed by the coil, as illustrated in Figure 11.3. The inten- 
sity and polarization of the field is conveniently represented by 
a vector H whose magnitude is proportional to the excitation 
current and whose direction is normal to the plane of the coil 
(in the right-hand sense). 

11.3    Electromagnetic Field Coupling 

In this section we consider an electromagnetic field phenomenon 
known as coupling. Coupling exists between the signal-emitting 
device called a Source and the signal-receiving device known as 
a Sensor. The peculiar properties of this coupling (in the near- 
field) are important to the measurement strategy which we are 
about to develop. Consider for a moment that you are holding in 
your hand a small AM/FM radio. Let the remote radio station 
with its antenna (wherever it is) be the Source, and the hand- 
held radio with its antenna, the Sensor. We all know that the 
orientation of the radio antenna relative to the electromagnetic 
field generated by the station antenna directly affects the signal 
sensed by the radio. That is, if we orient the antenna in a certain 
way, the signal sensed by the radio is maximal. If, however, we 
orient the antenna in a different way, perhaps orthogonal to the 
first orientation, the sensed signal is minimal. No doubt every 
reader has experienced this phenomenon. This homely example 
demonstrates that the EM coupling between the Source and the 
Sensor depends directly upon the relative orientation of the two 
antennas. 

Here we shall represent the EM field H generated by the 
Source and the corresponding signal S detected by the Sensor 
as vectors. Although electromagnetic field theory is beyond the 
scope of our present discussion, we shall have to make use of 
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some important results from that theory. One of these results 
is that if we represent these two vectors, H and S, in the same 
frame, the components of the sensed signal vector turn out to be 
certain constant multiples of the components of the source field 
vector. These constants are called coupling coefficients. Our 
first task will be to determine the nature of these coefficients. 

Let both the Source and the Sensor be simple 'flat' circular 
coils whose physical dimensions are very small compared to the 
distance which separates them. If one coil is the Source and 
the other the Sensor, then at any fixed separation distance such 
that near-field conditions prevail (terms we shall define in a mo- 
ment), the magnitude of the signal detected by the Sensor when 

SOURCE 

Co-axial Coupling: c = 2 

RELATIVE COUPLING 
COEFFICIENTS 

Co-planar Coupling: c = -l 

SENSOR 

Figure 11.4: Near-Field EM Coupling 

the two coils are coaxial is twice that detected by the Sensor 
when the two coils are coplanar. Moreover, if the co-axial cou- 
pling is positive, then the co-planar coupling is negative, as the 
illustration in Figure 11.4 suggests. This fundamental property 
of electromagnetic field coupling in the near-field is crucial to 
the measurement strategy and process which we now develop. 
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11.3.1    Unit Z-axis Source Excitation 

We begin by considering a relatively simple case which will be 
sufficient to suggest what these coupling coefficients are. Con- 
sider a unit excitation applied to a Source — a single short dipole 
element, as illustrated in Figure 11.5. The field generated by the 

In Figure 11.5 the Source z-Coil is 
the Source element, with the mag- 
netic moment vector H directed 
along the reference Z-axis. 

Sensor\j^\ xyz 
Tracking Frame 

XYZ 
Reference or 
Source Frame 

Here we begin by using the more 
familiar rotation matrices; quater- 
nion methods come later. The 
reader may wish to review the ro- 
tation matrix tracking transforma- 
tion as discussed in Chapter 3. See 
Equation 3.5. 

Figure 11.5: Z-axis Dipole Source 

unit excitation vector H, which in this case is simply the basis 
vector k = col[0, 0, 1], is detected by a remote Sensor whose 
location (R,a,ß), as yet unknown, is partially defined by the in- 
dicated tracking frame. The tracking transformation is defined 
by the matrix of Equation 11.1 and denoted P, where 

P   = 
cos ß   0   - sin ß ' cos a    sin a   0 

0      1       0 — sin a   cos a   0 
sin/3   0    cos/3 0          0      1 

cos a cos ß   sin a cos ß   — sin ß " 
— sin a         cos a           0 

cos a sin ß   sin a s in ß    cos/? 
(11.1) 
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The matrix operator P takes every signal which is generated by 
the Source (expressed as a vector in the Source frame) into its 
equivalent expression in the Tracking frame. 

We emphasize at this point that simply because the Source 
signals are here expressed in the tracking frame (which simply 
locates the Sensor relative to the Source) does not necessarily 
mean that the orientation of the Sensor coincides with that of 
the tracking frame. It is not only convenient but necessary that 
we express the coupling relationships between source and sensor 
in this intermediate frame. The actual source field components 
are expressed in the tracking frame, and the actual sensor signal 
components must also be expressed in the tracking frame for 
correlation purposes. 

The electromagnetic field equations for this "short" Z-axis 
dipole (equivalent dipole length < 0.1 wavelength) illustrated 
in Figure 11.5 are derived in many standard texts on electro- 
magnetic waves. From the results derived in these references we 
may state that (for the indicated z-axis excitation) the remotely 
sensed signal components defined in the tracking frame are 

ex   =   -?2kp 3(cosf - psini/) sin/3 

ey   =   0 

ez   =   — kp~3 (cos v — p sin v + p2 cos v) cos ß 

(11.2) 

where, in these equations along with the position parameters, 
R, a and ß, we have 

2nR 
P A 

Frame 

Remote Body 
Position is 
a,ß, andR 

Figure 11.2 
Six Degrees-of-Freedom 

where 

R   =   distance from Source to Sensor 

X   =   wavelength of Source excitation 

ß   =   elevation angle of the radial direction vector, 
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Here we defined F = p~3cosv. 
This suggests that F is a constant. 
But the reader should note that 
since v is time-dependent, so is the 
parameter F. 

Source-to-Sensor, from the plane normal 

to the excitation vector (see Figure 11.5) 
v   =   u>t — p 

u)   =   radian frequency of Source excitation 

k   =   attenuation factor 

When we assume that we are operating in the near-field, we 
mean that the distance R is very small relative to the wavelength 
A, of the Source excitation. As a consequence the constant p is 
very small, that is, p « 1. And since | sini/| < 1 and | cosi/| < 
1, Equations 11.2 may be simplified by neglecting the terms 
p sin v and p2 cos v. If we define a parameter F = p~3 cos v then 
Equations 11.2 may be written 

ex   =   -2kFsinß 

e„   =   0 

ez   =   — kF cos ß 

(11.3) 

We emphasize that although the components, ex, ey, and ez, are 
Sensor signals, they are here defined in the tracking frame at 
that point in the Source space occupied by the Sensor. 

Tracking 
Frame 

Reference 
Frame % 

Figure 11.5z 
Z-axis Dipole Source 

It is not difficult to verify that the field components of the 
unit Z-axis source excitation, k = col[0,0,1], as expressed in the 
tracking frame, are 

Pk = col[— sin/?,        0,        cos/3] 

But now note, these Source components which are defined in the 
tracking frame couple into the Sensor to produce the respective 
components indicated in Equations 11.3 (also, defined in the 
tracking frame). That is, 

Source 
Components 

— sin/? -2Fsin/? 
0 => 0 

cos/? -Fcosß 

Sensor 
Signals 
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From this we conclude that the relative coupling coefficients 
which take the k-vector excitation components into the corre- 
sponding sensed components, as defined in the tracking frame, 
are 2, -1, -1 , respectively. As we would expect, the two 
co-planar or transverse coupling coefficients are the same. 

Up to this point, the unit excitation of the source was taken 
to be the vector k. The analysis of this choice is commonly 
made in the literature — and this choice makes sense in that 
vertical source antennas with respect to the ground plane are 
by far the most common orientation in applications. In order 
to determine the sensed field intensity at an arbitrary remote 
point in space relative to this vertical source antenna, a polar 
translation, (R, a, ß), was employed to define the remote point. 
The derivation is simplified because the 1st rotation, a, in the 
polar translation is about the vertical axis which contains the 
source antenna. This produces a zero as the y-component of the 
k-axis source excitation expressed in the tracking frame. 

Note in this tracking transforma- 
tion 

P = YZ 

that is, first a principal axis rota- 
tion about the z-axis, followed by 
a principal axis rotation about the 
y-axis. It follows then that P23 = 0 
as indicated in the matrix Equa- 
tion 11.1. 

11.3.2    Unit X-axis Source Excitation 

In the preceding section we began by taking the unit source 
excitation to be the basis vector k. We did this simply because 
that is the usual choice in electromagnetic field theory literature. 
We could just as well have chosen another basis vector, although 
the choice of k was particularly convenient. If we take the unit 
source excitation to be the i-vector (that is, along the x-axis), 
then the sensed field intensity or signal components defined in 
the tracking frame would be 

ex   =   2p~3 (cos v — p sin v) cos a cos ß 

ey   =   p~3(cosu-psinv+ p2cosv)sina (H-4) 

ez   =   — p~3 (cos v — p sin v + p2 cos u) cos a sin ß 

Tracking 
Frame 

Reference —j. 
Frame z I 

Figure 11.5x 
X-axis Dipole Source 
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instead of those shown in Equations 11.2. Then as a result, the 
simplified equations would become 

ex   —   2F cos a cos ß 

ey   —   F sin a 

ez   =   —F cos a sin/? 

(11.5) 

instead of those listed in Equations 11.3. A third choice is, of 

Tracking Frame 

Reference 
Frame 

Figure 11.6: X-axis Dipole Source 

course, the basis vector j, and expressions similar to the above 
could be obtained. In fact, we can summarize all three choices 
in the following way. We may think of the choices of i, j, and 
k as a time-multiplexed sequence of unit Source excitations. If 
we let the columns of the matrix E{ represent the sequence of 
Source excitations, expressed in the Source frame, then the re- 
sulting sensed signals, expressed in the tracking frame, may be 
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represented by the columns of the matrix, E0, where 

E0 = CPEi = CP 
' 1 0 0] 

0 1 0 
0 0 1 

(11.6) 

Here, P, is the tracking matrix of Equation 11.1 and the Cou- 
pling matrix, C, is 

C   = 
2    0 
0   -1 
0    0 

0 
0 
-1 

(11.7) 

Notice that the entries in the matrix C are exactly the cou- 
pling coefficients obtained earlier, and that for each excitation 
component the elements of the matrix C apply appropriately. 

11.4    Source-to-Sensor Coupling 

In this section we introduce a slight generalization of what we 
have done so far.   The generalized electromagnetic near-field 

V= Direction to the 
Remote SENSOR 

Figure 11.7: Source and Source Frame 

Source-to-Sensor coupling is now derived in the context of the 

Remote Body 
Position is 
a, ß, andR 

Figure 11.2 
Six Degrees-of-Freedom 



312 CHAPTER 11.   A QUATERNION PROCESS 

The columns of the input excita- 
tion matrix, Ei, can in principle be 
any set of three independent time- 
multiplexed excitation vectors. 

Remote Body 
Position is 
a, P, andR 

Figure 11.2 
Six Degrees-of-Freedom 

coordinate relationships which define the relative orientation be- 
tween the Source and Sensor frames. In Figure 11.7 the vectors 
i, j and k, represent not only the orthonormal frame of the 
body which contains the Source, but also the sequence of the 
three (time-multiplexed) orthonormal excitations of the 3-axis 
Source. This sequence of unit Source excitations is conveniently 
represented by the column vectors of the matrix Ei, which in 
this case is the identity matrix as in Equation 11.6. However, 
since the location of the remote Sensor is in the direction of the 
vector V (defined by the x-axis of the tracking frame) we resolve 
each of these Source excitations into an axial and two normal 
components defined in the remote tracking frame. Clearly, these 
excitation components in the tracking frame are functions of the 
tracking angles, a and ß. The relative coupling coefficients for 
these resolved components (one axial and two normal) in the 
tracking frame, are 2, -1, and -1, respectively. We emphasize 
that these values for the coupling coefficients are appropriate 
when both the Source excitations and the signals sensed by the 
Sensor are viewed in the same coordinate frame, which in this 
case is the tracking frame. 

We emphasize further that the tracking frame is simply an 
auxiliary frame within which the Source and Sensor signals are 
easily related. What we need are the signals detected by the 
Sensor, in the Sensor frame. 

First, we recall that the instantaneous position of a remote 
body is defined by the polar position triple (a,ß,R), with re- 
spect to the Source frame. Here the parameter R represents the 
Source-to-Sensor distance. This distance, or Range, is measured 
using an ' inverse-cube-attenuation-with-range' scheme which is 
discussed in the next section. However, the actual Source-to- 
Sensor coupling is also dependent upon the relative orientation 
of these two bodies. 
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In order to define the orientation of the remote Sensor with 
respect to the Reference or Source frame, we adopt the famil- 
iar Aerospace sequence of three Euler angle rotations, namely, 
Heading (ip), Elevation (9), and Bank Angle ((p), about the z, 
y, and x axes, respectively, as illustrated in Figure 11.2. As we 
know from the discussion in Section 4.3 and 4.4, this Aerospace 
sequence may be represented by the rotation matrix 

Oil     Ol2     Ol3 

A   = Ü21     022     ^23 

. ^31     °32    «33 . 

r i     o      o 
and R   = 0     cos (j)     sin 4> 

0   — sin <j>   cos (p 

' cos 9   0   — sin 6 
E   = 0      1       0 

sin 9   0    cos 9 

cos ip     simp   0 
and H   = — sin ip   cos xp   0 

0           0 1 

REH (11.8) 

The indicated matrix product for A defines the elements: 

an = cos ip cos 9 

au = sin ip cos 9 

ai3 = - sin 9 

a21 = cos tp sin 9 sin <p — sin t/> cos <f> 

a<n = sin ip sin 9 sin <p + cos ip cos 0            (H-9) 

a23 = cos 0 sin 0 

a31 = cos ^ sin 9 cos 0 + sin ip sin 0 

032 = sin ip sin 0 cos (p — cos ^ sin <f> 

a33 = cos Ö cos <p 

In summary, the two rotation matrices, P and A, provide the 
means for relating the Source frame to the Tracking frame and 
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the Source frame to the Sensor frame, respectively. 

Remote Body 
Position is 
a, ß, and R 

Figure 11.2 
Six Degrees-of-Freedom 

Our ultimate objective, of course, is to determine the relative 
position and orientation of the remote Sensor. To do this we can 
work only with the signals used to excite the Source and those 
sensed by the Sensor. At this point, we have the sensed signals 
analytically expressed in the tracking frame by the matrix of 
Equation 11.6. To get these signals from the tracking frame 
into the Sensor frame, we merely take them first back to the 
Source frame, using the inverse of the matrix, P, namely, Pl, 
and then from the Source frame into the Sensor frame using the 
orientation matrix, A. It follows then if the time-multiplexed 
excitations on the Source are given by the columns of the matrix 
Ei and the corresponding sensed signals are expressed in the 
Sensor frame by the columns of the matrix E0, we can write 

E0   —   SEi (11.10) 

where 

and 

S 

Q 

A 

P 

C 

k 

kAPlCP = kQCP (11.11) 

AP1   takes vectors from the Tracking 

frame to the Sensor frame 

the orientation matrix, which relates 

the Sensor frame wrt Source frame 

the tracking matrix, which defines the 

direction to the Sensor wrt Source frame 

the coupling matrix 

dg[2, — 1, — 1], for near-field 

the EM field coupling/attenuation factor 

Equation 11.10 properly relates any near-field excitation of 
the Source (given by Ei) to the corresponding signals, E0, sensed 
or measured by the Sensor.  Since we know Ei äpriori and for 
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this known input sequence we measure the corresponding output 
sequence E0 we can write 

S   =   E0E'1 (11.12) 

It follows that, since the spanning set of excitations Ei is known 
äpriori, its inverse may be computed äpriori, and since the cor- 
responding E0 is measured, the elements of the matrix, S, are 
determined. 

Recall, however, we earlier developed an analytical expres- 
sion for this measured signal matrix, S, namely, 

S = kAPlCP 

The only known quatities in this equation are the measured 
signal matrix, 5, and the coupling matrix, C. We now must 
find algorithms which will determine the attenuation factor, k, 
the Range, R, and the rotation matrices, P and A. We do this 
in a rather creative way. This then will completely determine 
the relative position and orientation of the remote object, which 
is our goal. 

11.5    Source-to-Sensor Distance 

The magnitude of the signals detected by the 3-axis Sensor, un- 
der near-field conditions, varies inversely with the cube of the 
distance, R, between Source and Sensor. In other words, the 
attenuation factor k is proportional to 1/R3. 

We determine k as follows. Justfied in the margin, we let 

U = StS   =   k2PtC2P (11.13) 

The trace of the matrix U, denoted tr(U), is merely the sum 
of the terms on the main diagonal of the matrix U, which for 

U = 5*5 
= (kAP'CPYikAP'CP) 
= A.2(ptctpA(ylptCp) 

= fc2(ptctCp) 

ut & = C 
so, U = k2ptC2p 
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A Theorem which applies to Equa- 
tion 11.13 is that the trace of 
a matrix, C2, is invariant un- 
der the similarity transformation, 

This inverse-cube relationship be- 
tween range and the detected sig- 
nal strength means we may write 

a    =    some constant 
=    kR3 

=    k0Rl 

=>      R3      =      R3n^ 

Equation 11.13 we write 

tr(U)   = triS'S) 

= tr(k2PtC2P) 

= tr{k2C2) 

= 6k2 

Therefore, since U is computed using the measured signal ma- 
trix S we can write 

k   =   [tr{U)/^m (11.14) 

The measurement of the Range, R, that is, the distance between 
the Source and the Sensor, uses this computed value for k in the 
following open-loop range measurement scheme. In this mea- 
surement scheme we assume that the excitation of the Source is 
well regulated and that the electronic attributes of the system 
are consistent with maintaining a precise open-loop calibration 
over a wide dynamic range. 

Let k0 be the value for k in Equation 11.14 which corresponds 
to range R0, the reference range (distance Source-to-Sensor) as 
determined in the initial calibration of the system. Then, since 
in the near-field, k varies inversely with R3 we can express the 
measure for any range (within some sensible operational do- 
main) to be 

R   =   R0(k0/k)W (11.15) 

Thus we have determined the distance R between the Source and 
the Sensor. This range R, however, is only one of the six degrees- 
of-freedom to be determined by this measurement system. 

11.6    Angular Degrees-of-Freedom 

What remains to be determined are the two tracking angles a 
and ß in the matrix F, and the three orientation angles iß, 8, 
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and (f), in the rotation matrix A. 

11.6.1    Preliminary Analysis 

We will determine the remaining five degrees of freedom by un- 
coupling the position and orientation matrices P and A which 
reside in the measured signal matrix S. We begin by dividing 
the signal matrix S by the value of k which we have just deter- 
mined. This gives us a matrix M which is independent of the 
range R. That is, we write 

M   =   APlCP (11.16) 

At this preliminary point in our analysis we are not only very 
fortunate but it is also very important to recognize that the 
coupling coefficient matrix C may be written 

C   =   dg[2,-l,-l]   =   2>EX-I (11.17) 

where the matrix / = dg[l, 1,1] is the identity matrix and we 
define E\ to be the zero matrix except with element en = 1- 

Remote Body 
Position is 
o, ß, andR 

Figure 11.2 
Six Degrees-of-Freedom 

Using this representation for C, the reader should verify (as 
shown in part in the margin) that 

11.6.2 

MfM   =   3X + I 

and AlM   =   3X-I 

where X   =   P'EiP 

Closed-form Tracking Angle Compu- 
tation 

Note that Equation 11.18 involves only the tracking matrix P, 
that is, X is independent of the orientation matrix A.   If we 

M'M    =    S'S 
= (APtCPYiAP'CP) 

(11.18) 
= PtCtPAtAPtCP 

= PtCtCP 

(11.19) but    C*     = C   so we write 

(11.20) M*M    = ptcip 

P*(3£i - lfP 
= P\$E\ - 6Ei +I)P 

= Pl{3Ei + I)P 
= 3P'£;iP4-/ 

Remember in all of this, the ma- 
trix, M, is the 'normalized' matrix 
of signal measurements. 
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solve this equation for X we get 

X    =    PlExP   =   (M*M-/)/3 (11.21) 

Since the numerical values in the matrix M are known (mea- 
sured), therefore so are those in matrix X. 

However, in our analysis the matrix X was denned as in 
Equation 11.20 to be 

X = PlExP 

which means that each element of the matrix X must be some 
function of the tracking angles, a and /?. 

That is,     xn — cos2 a cos2 ß 

x12 = cos a sin a cos2 ß 

£13 = — cos a sin ß cos ß 

x2i = cos a sin a cos2 ß 

£22 = sin2 a cos2/? (11.22) 

The reader may wish  to verify ^23     =     — sin Oi sin ß COS ß 
these analytical expressions for the . 
elements of the matrix X. ^31     =     ~ COS a Sin ß COS ß 

£32   =   -sin a sin/? cos/? 

£33   =   sin2 ß 

It is now easy to see that 

sin a £22 
tana   =       =   — 

cos a £12 
and sin/?   =   ±y/x~^ 

Since the numerical values for £j2, £22, and £33, are known, 
these equations determine the tracking angles a and /?. Any 
ambiguities in the angles over the operational domain are usually 
resolved by the physical constraints imposed by the application. 
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11.6.3    Orientation Angle Computation — Closed- 
form 

To compute the relative orientation of the remote Sensor, we 
shall first write the inverse of the normalized signal matrix M 
of Equation 11.16 as 

M-1 = [AP'CP]-1 = P'C^PA1 

To get a useful analytical expression for this inverse we first 
invent a new expression for the inverse of the coupling matrix 
C. Since C is a diagonal matrix, it is easily inverted to obtain 

Cl = dg{\,-l,-\] = \dg[\,-2,-2] 

Then using the techniques we employed earlier we may write This technique was first applied 
in the expression for the Coupling 

1 , Matrix in Equation 11.17. 
C'1 =-[3E, - 21) 

where / is an identity matrix and Et, as before, is a zero matrix 
except that en = 1. The inverse of the matrix M then becomes 

=   -P'[3£i - 21] PA* 

=   ]-[?>PiElP-2I)At 

ßut now, since PlEiP = X and MlM = 3X + i", we may write 

M-1   =   hpX-2l\A% 

=   i[M*M-3/]i4* 

If we premultiply both sides of this equation by this signal ma- 
trix M, and postmultiply both sides by the orientation rotation 
matrix A, we finally obtain 

A   =   \M[M
1
M-ZI} (11.23) 
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SOURCE 
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SENSOR 
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\Z 
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\Z 
COMPUTED 
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between 
Body 1 & Body 2 

Figure 11.1 

System Block Diagram 

Since the numerical values of the elements of the matrix M are 
known, then so are the numerical values of the rotation matrix A. 
And since analytical expressions for the elements of the matrix 
A are also known, as listed in Equations 11.9, it is relatively 
easy to obtain 

tantA 

and sinö 

and tan0 

sinV> 

cosip 

-«33 

sin0 
COS0 

Ql2 

an 

023 

033 

Each of the elements of the orientation matrix, A, are de- 
fined by the Equations 11.9, but the corresponding 'normalized' 
measurement of these elements is defined as a function of Equa- 
tion 11.16 by Equation 11.23. Again, it should be emphasized 
that solving for P and A using these matrix methods, often 
results in some hemispheric ambiguity. These ambiguities, how- 
ever, are usually eliminated by application boundaries or appro- 
priate placement and orientation of the Source. 

In summary to this point, the three column vectors of the 
signal matrix E0 represent signals detected by the 3-axis Sensor. 
These signal vectors are the result of corresponding orthonormal 
excitations applied at the remote 3-axis Source. The 3x3 signal 
set at the Sensor is 'normalized' and the resulting measure of the 
attenuation factor 'k' provides the basis for a regulated open- 
loop measure of the distance. The 'normalized' signal set M is 
the grist for the system process. This process provides the means 
for determining the relative position and the relative orientation 
of the Sensor frame, respectively, with respect to the frame of 
the relatively remote Source. 
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11.7    Quaternion Processes 

As the reader of the earlier chapters knows very well by now, 
our primary purpose is to explore the use of quaternions in the 
analysis of rotations in R3 as an alternative to the use of matrix 
rotation operators. So now we turn to considering the preced- 
ing problems from a quaternion point of view. We begin with a 
reminder of three important matters. 

First, if a unit vector u defines the direction of the axis of 
a rotation in R3 and a is the angle of that rotation, then the 
quaternion q associated with that rotation is 

a .   a 
q = cos — + u sin — 

Second, if q is a unit quaternion with complex conjugate 
q*, then the quaternion operator q*vq represents a coordinate 
frame rotation in which the vector v is now expressed as vector 
w = q*vq in the rotated frame. 

Third, to this point we have used only vectors in our com- 
putations with quaternions — treating vectors as quaternions 
with real part zero. Now, however, it will be helpful to use the 
compact notation which matrices afford. That is to say, if A is 
a 3 x n matrix, whose column vectors are ai, a2, • • • an, we will 
agree that the quaternion operation q*Aq yields a 3 x n matrix 
B = q*Aq whose column vectors b* are given by bj = q*a^q 
for i = 1,2, • • •, n. It follows that if Q is the rotation matrix 
associated with the quaternion q, we have 

B = QA = q*Aq 

With these considerations in mind, we return once again to our 
signal matrix E0 given in Equation 11.10 as 

E0   =   SE{ 

where S   =   kAPlCP = kQCP 
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Figure 11.2 
Six Degrees-of-Freedom 

as in Equation 11.11. Here both A and P and therefore Q rep- 
resent rotations in R3. In terms of quaternions, let us associate 
with each of these rotation matrices the quaternions a, p and q, 
respectively. Then the signal matrix E0 may be written as 

E0   =   SEi 

=   kQCPEi 

=   kq*[C(p*EiP)}q (11.24) 

where       E{   =    matrix whose columns are time-multiplexed 

excitations of the Source triad 

and       q   =   p*a    in quaternion notation 

Earlier, we have shown that matrix Equations 11.18, 11.19 and 
11.20 can be solved to give a closed form measure of the de- 
sired relative position and orientation of the Source and Sensor 
frames. It does seem to be the case, however, that a correspond- 
ing closed-form solution using quaternion rotation operators is 
not so easily obtained. In the next section we give a partial solu- 
tion, in terms of quaternions, for the tracking angles which deter- 
mine the direction to the remote object. Closed-form quaternion 
based solutions for the distance to the remote object, as well as 
its orientation angles, must await further investigations. It is 
likely, however, that the analysis must proceed along the lines 
indicated in the next section. 

It should be noted at this point, however, that various rota- 
tion matrix and/or quaternion operators may still be used in a 
variety of configurations, even hybrid, depending upon the ap- 
plication. Therefore ■, using the results that we have obtained to 
this point, we will develop three alternative iterative quaternion 
processes which may be used to provide a measure of 

1. Position only, or 

2. Orientation only, or 
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3. Both Position and Orientation, as a 

(a) Simultaneous Process, or as a 

(b) Parallel Process 

The parallel processor for determining Position and Orientation 
is time-efficient and is particularly appropriate in certain 'real- 
time' computer graphics applications. Some of these applica- 
tions will be discussed later, after we develop in some detail the 
processes listed above. 

11.8    Tracking Quaternion — a Par- 
tial Closed-form Solution 

We begin our quaternion solution for the tracking angles a and 
ß by considering the matrix X of Equation 11.20. We have 

X = I*EiP 

From Equation 11.21 we note that since the elements of the 
matrix M are known numerically from the sensed data, so are 
the elements of the matrix X. Further, for any vector v, we 
know that if 

P = Po + Pii + P2J + P3k 

is the quaternion which corresponds to the rotation matrix P 
we may write 

Pv = p*vp 

and 
P'v = p\p* 

It follows that we may write 

X   =   P*EiP =  hM'M-I]    (computed) 

Sensor Signals 

S = ka*p[H(p*Ip)]p*a 

Normalized Signals 

M = a*p[H(p*Ip)]p*a 

T^- 

Position Processor 

Application 

Figure 11.8 
Processor for 

Position ONLY 

=   pVp* (11.25) 

When we show the quaternion ro- 
tation operator operating on a 3i3 
matrix as in Equation 11.26, it is 
to be understood that the opera- 
tion is to be performed on each of 
the column vectors, in turn, which 
comprise the matrix. 
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Reference 
Equation 11.21 

ptEiP   =   (M*M-I)/3 

where     V = EXP = Etylp]                            (11.26) 

and     M = 3x3 signal matrix (measured) 

I = & 3x3 identity matrix 

and     E\ = zero matrix, except en = 1 

We now first expand the second equality on the right-hand side 
of Equation 11.21 for each of the column vectors of the Identity 
matrix 

I   =   [ei    e2    e3] 

We perform the quaternion operation p*&iP on each of the 
standard basis vectors ej. Each is then multiplied on the left by 
E\ to produce vectors v* 

■\i = Ei\p*e<p]  for t =  1,2,3 

We now compute these three new vectors as functions of the 
tracking quaternion components. 

vj   =   Eip*eip 

=   £i[(2pjj - ljd + 2(ei • p)p + 2p0(ei x p)] 

=   Ex 

' 2p2
0 + 2pl-l " 

2pip2 - 2p0p3 

2pip3 + 2p0p2 

= 

a 
0 
0 

Similarly, 

v2   = =   E1p*e2p 

=   Ei[(2pl - l)e2 + 2(e2 • p)p + 2p0(e2 x p)] 

=   Ei 
" 2p2pi + 2pop3 ' 

2pl + 2p2
2-l 

2p2p3 - 2p0pi 
= 

" 6 ' 
0 
0 

and finally, 
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v3   =   Eip*e3p 

=   Ex[(2p2 - l)e3 + 2(e3 • p)p + 2p0(e3 x p)] 

Ex 
2p3px - 2p0p2 
2p3p2 + 2p0pi 
p2o + 2p2

3-l 

c 
0 
0 

where, merely to simplify the notation, we let 

a   =   2p2
Q + 2p\-l 

b   =   2p2pi + 2p0p3 

c   =   2p3pi - 2p0p2 

Now, since X = pVp* as indicated in Equation 11.25, we must 
operate again on the matrix 

V 

whose three columns are scalar multiples of each other, as indi- 
cated. It is not difficult to show that after performing this last 
quaternion operation, we get 

a   b c 
0   0 0 
0   0 0 

X   = 
a2   ab ac 
ba   b2 be 
ca   cb c2 

(11.27) 

where o, b, and c are functions of the tracking quaternion com- 
ponents indicated above. 

Again, the tracking quaternion we have designated as 

V = Po + P = Po + ipi + JP2 + kp3 

where each of the four quaternion components, namely po, px, 
p2, and p3, are functions of the two angles employed in the (as 
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Recall, 

cos 20    =    cos2 0- sin2 0 

sin 20    =    2 sin 0 cos 0 

yet unspecified) angle/axis tracking sequence. We define the 
angle/axis sequence as before: first, a rotation through an angle 
a about the reference Z-axis, followed by a rotation through an 
angle ß about the new y-axis. Then, as we have already shown 
at the end of Chapter 6, we have 

,      öL .   a ß ß 
p   =   (cos- + ksin-)(cos-+jsm-) 

a       ß 
=   cos — cos — 

2       2 
. .   a  .   ß 

—l sin — sin — 
2       2 

+jcos|sin^ (11.28) 

+k sin — cos — 

=   Po + ipi+jP2 + kp3 

Now we return to Equation 11.27 and note that 

x\\   =   a2 

where 2,2 2 
=    P0+Pl-P2 PI 

Upon substitution of the equivalent trigonometric expression 
from Equations 11.28 for the pfc's and after invoking trigono- 
metric identities (suggested in the margin), we get 

a   =   cos a cos ß 

Therefore 

X\\   =   cos2 a cos2 ß 

which agrees with the result obtained earlier in the matrix anal- 
ysis of the tracking angles (see Equations 11.22). 

In like fashion, Equation 11.27 tells us, for example, that 

x23   =   be 

where b   =   2p2pi + 2p0p3 

and c   =   2p3p1 - 2p0p2 
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Again, upon substitution of the equivalent trigonometric expres- 
sion from Equations 11.28 for the pfc's and after invoking appro- 
priate trigonometric identities, we get 

x23 = be = — sin a sin ß cos ß 

as before. The other entries in the matrix X may be determined 
in like manner. Prom these expressions the tracking angles are 
determined just as before. 

We will not at this time attempt to determine the distance 
to the remote body or its relative orientation using quaternion 
analysis. Rather, we turn instead to a quaternion based iterative 
process for the system. 

11.9    The Tracking Quaternion 
Iterative Solution 

an 

We now present an iterative process on Equation 11.21 which is 
rewritten in terms of the tracking quaternion p. The process will 
converge to a measure of the tracking quaternion which defines 
the direction to the remote Sensor relative to the Source frame 
(see Figure 11.2). 

We rewrite the right-hand side of Equation 11.20 partially 
in terms of the actual quaternion p, to give 

X   =   P'ErP^ p{ExP)p* (11.29) 

The 2nd equality of the Equations 11.29 is now ready for the 
first step in the quaternion process. 

We begin the iterative process by estimating the tracking 
quaternion, p, which we wish to determine. Using the estimated 
quaternion, denoted p, our strategy is to 'undo' the indicated 

Sensor Signals 

S = ka*p[H(p*Ip)]p*a 

Normalized Signals 

M = a*p[H(p*Ip)]p*a 

"^T 
Position Processor 

VtE1P = (MtM-l)/3 

o     
Application 

Figure 11.8 
Processor for 

Position ONLY 

Reference 
Equation 11.21 

PlExP   =   (M'M--0/3 
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Sensor Signals 

S = ka*p[H(p*Ip)]p*a 

Normalized Signals 

M = a*p[H(p*Ip)]p*a 

■T^- 

Position Processor 

PtE1P=(MtM-I)/3 

TT 

Application 

Figure 11.8 
Processor for 

Tracking ONLY 

Note that the algorithm 

X   =   P'£iP 

=    ^[M'M-I] 

=    f(measurements) 

=   X* 
=    symmetric matrix 

transformations which appear in Equation 11.29. If the esti- 
mated quaternion, p, is equal to the actual quaternion then the 
result, of course, will give the matrix E\. If, however, the es- 
timated quaternion is not equal to the actual quaternion, the 
resulting matrix E\ will show errors. Our objective at this point 
is to determine how the errors which appear in E\ are related 
to errors in the estimated tracking quaternion. 

We define the estimated quaternion, p, in terms of the actual 
tracking quaternion, p. To do this we write 

p = pd (11.30) 

where the quaternion d is the transition or error-quaternion 
which relates the actual quaternion p and its estimate, p. The 
error-quaternion d is 

with 

d   =   d0 + d 

d   =   idi + jrf2 + krf3 

(11.31) 

We now operate on Equation 11.29 with this best estimate in an 
attempt to 'undo' the effect of the first p operation. 

Xx   = p*Xp 

= p*p(E1P)p*p 

= d*p*p(EiP)p*pd 

= d*{ExP)d (11.32) 

~ (I-2D)E1P (11.33) 

Equation 11.33 is Equation 11.32 expanded in matrix form with 
the assumption that |d| is small, that is, |d| —► 0 and d0 = 1. 
The vector components of the error-quaternion, namely d, are 
the elements of the error matrix 

D   = 
0     -d3    d2 

d3       0     -di 
-d2    di       0 

(11.34) 
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We now take the transpose of both sides of Equation 11.33 and 
again express the tracking matrix P in terms of its equivalent 
tracking quaternion p, and we write 

(X.Y   =   p[E1(I + 2D)}p* (11.35) 

As before, we now operate on Equation 11.35 with p, the best 
estimate of p 

F[(*i)']P   =   (I-2D)E1(I + 2D) 
=   E1 + 2E1D-2DE1-ADE1D   (11.36) 

Since the vector part of the tracking error quaternion d is 
assumed to be small compared to one, the last term on the 
right-hand side of Equation 11.36 is taken to be negligible. The 
remaining three terms on the right-hand side of 11.36 then form 
the matrix 

E1 + 2E1D-2DE1   = 
1      -2dz   2d2 

-2d3      0        0 
2d2        0        0 

(11.37) 

Up to this point we have merely derived an error-matrix whose 
elements provide algorithms which define the errors in the most 
recent estimated quaternion, p, for the position-only Process. 
However, the same sequence of operations which resulted in 
Equations 11.22 define the actual (ongoing) process which must 
be performed on the right-hand side of Equation 11.21. 

Reference 
After performing these operations — also twice, as indicated Equation 11.21 

above — on the right-hand side of Equation 11.21 each element PtE\P   =   (MlM - 7)/3 
in the matrix of Equations 11.22 may be assigned a numerical 
value. The numerical values of the elements of the resulting ma- 
trix provide values for the corresponding elements d2 and d3 in 
Error-matrix equation 11.22. 
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After successive iterations, the vector part, |d|, hopefully, 
approaches 0, and the real part, d0, approaches 1. As this hap- 
pens, of course, the estimated quaternion, p, approaches the 
actual quaternion, p. 

It might be argued that since the tracking transformation 
involves only two rotations, and if these two tracking angles are 
the conventional tracking heading and the tracking elevation, 
then the d\ component of the tracking error-quaternion may be 
computed as, d\ = —G^ofo/do- However, recall that at the outset 
the vector part of the tracking error-quaternion was assumed 
small and do — 1- Therefore, the product of two small compo- 
nents should be exceedingly small which justifies that d\ ~ 0. 

These computed values for d2 and d3 define the resulting 
tracking error quaternion to be 

d   =   d0 + d   =   d0 + jd2 + kd3 

~   1 + d 

This computed value for the tracking error-quaternion, d, we 
now use in Equation 11.30 to compute the actual quaternion p. 
But the most we can claim is that this newly computed 'actual' 
quaternion is merely a more precise estimate for the tracking 
quaternion. That is, 

Since        p   =   pd 

then        p   =   pd* 

But, the right-hand side of this last equation is still an 

estimate, so the best we can say is that 

P   —   Pnew       =       Poldd* 

and then repeat the process until the error-quaternion, d —> 1. 
In other words, repeating this process indefinitely or until the 
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vector part of the tracking error-quaternion, d, becomes suffi- 
ciently small produces a precise measure of the tracking quater- 
nion. We emphasize that only the direction portion of the Sen- 
sor position triplet is determined from this computed tracking 
quaternion. The value for R would, of course, come from the 
normalization process discussed above. 

It should be noted that the foregoing process, which con- 
verges to a measure of the tracking quaternion q, is independent 
of the relative orientation between the Source and the Sensor. 

11.10    Orientation Quaternion 

We are now ready to develop an iterative process, using quater- 
nion rotation operators, to determine the angles ip, 6, and 0, 
which define the orientation of the remote Sensor frame relative 
to the Source frame. These three rotation angles are exactly 
those which comprise the Aerospace Sequence which we have 
discussed earlier. In the preceding pages we have used the ma- 
trix A to represent this sequence of rotations, and the reader 
may wish to review the matrix form for the aerospace sequence 
as we discussed it in Section 4.4 of Chapter 4. From this form 
for the matrix A it is relatively easy to see that 

tani/' = an 

«22 
sin# = -«13 

tan</> = «23 

«33 

Thus if the matrix A is known we easily can calculate the ori- 
entation angles ip, 9, and <f>. We also know that the components 
of the matrix A can be written in terms of the components of 
the associated quaternion (once again, see page 141). It follows 
that in order to find the orientation angles we need only to find 
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the quaternion a which corresponds to the matrix A in Equa- 
tion 11.23. As we have noted before, the elements of the matrix 
M are known from the sensed data, so that the elements of the 
matrix A are also known numerically. Thus we may calculate 
the orientation angles directly from this information. 

Our interest here, however, is to see how quaternions may 
be used to solve this same problem. We remark further that in 
certain applications, it is not necessary to solve for the orienta- 
tion angles; it is sufficient simply to know the quaternion, a. So, 
here we present an iterative process on Equation 11.23, which 
will yield the desired orientation quaternion, a. The strategy we 
adopt here is similar to that employed in the determination of 

Reference the tracking quaternion in the previous section, namely, 
Equation 11.23 

A   =   a*Ia 
1 

Estimate the orientation quaternion, a.   Then, us- 
ing this estimate in an inverse quaternion rotation 

M(M M — 37) operator, attempt to invert the expression for the 
orientation matrix A in Equation 11.23. If the esti- 
mate is error-free then the resulting matrix will be 
the identity matrix. If the estimate is in error, as 
will at first usually be the case, then these errors 
will be displayed as non-zero off-diagonal elements 
of the 'identity' matrix. These error elements are 
then used to make the next estimate more precise, 
and the process is repeated. 

The left side of Equation 11.23, namely A, is the symbol which 
represents the 3x3 orientation rotation matrix. The equivalent 
quaternion rotation operator, denoted a* la in the first equal- 
ity, is also a 3 x 3 matrix whose elements are functions of the 
components of the quaternion a. The second equality merely 
emphasizes that the nine elements which comprise A and a* la 
have numerical values which are determined from the sensed 
data collected in the normalized measurement matrix M. 
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/ = ei   e2   e3 

Reference 
Equation 11.23 The unknown orientation quaternion, a, is estimated, the es- 

timate being denoted ä. We let a = uä where u is the transition 
quaternion or, in this instance, error-quaternion which relates 
the actual quaternion, a, which we wish to determine and its &   =   a*ja 

estimate, ä. With this definition of u, note that we then have _    1 MiMtM _ 3j\ 

ö   =   u*a 

u   =   aa* 

u*   =   äa* 

As before we shall assume that the error-quaternion u is nearly 
the identity quaternion, so that w0 « 1 and U\ « 0, u2 ~ 0, 
and u3 « 0. Thus second order terms in ux, w2, w3 may safely 
be neglected. We begin by operating on both sides of Equa- 
tion 11.23, namely 

A = a*Ia 

with the quaternion estimate ä to obtain 

äAä*   =   äa*Iaä* 

=   u*Iu 

Now if ä = a we have u = 1 and we would obtain the identity 
matrix. But usually some errors will appear. If we have 

where ei, e2, and e3 are the standard basis vectors, we may 
calculate the columns of the matrix u'lu by noting that 

u 'eku = {2ul - l)ek + 2(efc ■ u)u + 2u0(efc x u) 

In view of our earlier comments on the components of the error- 
quaternion u we may write 

u*ekU « efc + 2(efc x u)      for      k = 1,2,3 
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The reader is urged to check the algebraic details which allow 
us to write 

u*Iu   =   I + 2U 
0 u3 —u2 

where      U   =       —uz     0 Ui 
u2 -Mi      0 

As we have said before, if U = 0 we have ä = a and our problem 
is solved. If not all of the u^s are equal to zero then 

and we must repeat the process. And since ä = u*a we can use 
the last estimated ä and the newly computed value for the error 
quaternion u to compute a better estimate, a = uä or 

ä(netu) = uä(0icL) 

Then we repeat the process until 

wo —► 1     and      |u| —> 0     then     ä —► a 

It may be that initially the best estimate for the quaternion is 
the identity quaternion — ordinarily, the best estimate will be 
the most recent computed estimate. At any rate, the sequence 
of values which represent the estimated orientation quaternion, 
ä, converge rapidly to the 'actual' orientation quaternion in this 
iterative process. During normal operations, the computed best 
estimated orientation quaternion, ä, may (at each step in the 
iterative process) be used within some larger control process. 

11.11    Position &; Orientation 

The process for getting both position and orientation can take 
two forms.  Clearly, one could use the two separate processes, 
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described above, which yield position only and orientation only, 
either as concatenated or as parallel processes. 

Alternatively, we now present a process on Equation 11.16 
which will simultaneously determine both the tracking and the 
orientation quaternions. Recall the quaternion representation 
for the signal matrix in Equation 11.11 which after 'normaliza- 
tion' was written as 

M   =   q*[C{p*Ip)]q 

We now adopt the same processing strategy as used in the 
previous section, except that we estimate both the quaternion q 
and the tracking quaternion p, denoting these estimates as q and 
p, respectively. Again, we relate the unknown actual quaternions 
with their estimates by means of appropriate transition or error 
quaternions, e and d, so that 

Reference 
Equation 11.11 

S   =   ka*p[C(p*Ip)}p*a 

and 
q 
P 

eq 
pd 

or 
or 

q   = 
p   = 

eq 
pd* 

There are good reasons for choosing the order employed in the 
definition of these transition quaternions, as will become clear. 

These estimates are now used to process the normalized sig- 
nal matrix M. The strategy in this process is to invert the 
transformations indicated in Equation 11.16, using the improved 
quaternion estimates obtained after each iteration. Residual er- 
rors in the quaternion estimates appear as non-zero off-diagonal 
elements in the 'computed' coupling matrix. This iterative pro- 
cess, however, does converge to the expected diagonal coupling 
matrix C, and the estimated quaternions do converge to the ac- 
tual quaternions we seek to determine. 

As the first step in this process, we 'undo' the effect of the 
quaternion q in Equation 11.16, using its best estimate q. We 

Reference 
Equation 11.16 

M   =   APlCP = QCP 

=   a*p{C{p*Ip)]p*a 

=    q*[C{p*Ip))q 

Reference 
Equation 11.23 

A   =   ^MtM'M-37) 
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do this by computing 

Mi   =   qMq* 

=   qq*[C(fIp)}qq* 
=   e*CPe 

=   (I + 2E)CP 

0      e3     -e2 

where     E   =       — e3     0       e.\ 
e2     -ei     0 

(11.38) 

The reader is urged to check the 
algebraic details which yield these 
results 

Note: 

Cl = C 

(I + 2E)t = I-2E 

The next step is to 'undo' (or invert) the effect of the track- 
ing transformation, P, in Equation 11.38. To do this we first 
transpose both sides of Equation 11.38 which gives 

M2   =   M\ 

P'C(7 - 2E) 

pC(I - 2E)p* (11.39) 

We now operate on both sides of Equation 11.39 using the best 
estimate of the quaternion p, namely, p = pd 

M3 =  p*M2p 

=   p*pC{I-2E)p*p 

=   d*C(I-2E)d 

=   ( I + 2D)C(I - 2E) 

=   C + 2DC - 2CE - ADCE                (1 
negligible 

2           -2d3 - 4e3     2d2 + 4e2 

— -4d3 - 2e3          -1          -2di + 2ej 
4d2 + 2e2      2dj-2ei           -1 

[   0      d3    -d2 1 
where D = -d3     0       di 

d2     -dj     0 



=    q*[C(p*Ip)}q 

note:   q = p*a 
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We note that the elements of the matrix M3 are the elements of 
the coupling matrix C, except for the indicated error terms in 
the off-diagonal positions. 

Reference 
The foregoing analysis gives us algebraic expressions for the Equation 11.16 

elements of M3 in terms of the components of the error quater- M   =   APlCP — QCP 
nions, d ~ 1 + d and e ~ 1 + e. However, since the elements of _   a*v\c(v*Iv)]v*a 
the measured matrix M are known numerically, so are the ele- 
ments of the matrix M3. If we denote these numerically known 
elements of M3 as m(ij), the reader should verify that we may 
write 

d0 = 1 e0 — 1 
di = 0 ei = (m23 - m32)/4 
d2 = (2m31-mi3)/6 e2 = (2mu - m31)/6 
c?3 = ("h2 - 2m2i)/6 e3 =" (m2i - 2mi2)/6 

The new estimates for the quaternions p and q then are 

V = Pnew = (Pold)d q = qnew = {q0ld)& 

and the process is repeated either continuously or until the error 
becomes sufficiently small. Then, using the definitions stated 
with Equation 11.16, the orientation quaternion, a, is computed 
as the quaternion product 

a   =   pq (11-41) 
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Chapter 12 

Computer Graphics 

12.1    Introduction 

The invasion of the personal computer into virtually every as- 
pect of our lives has brought along with it a fascination with 
computer-generated imagery. A wide variety of software is on 
the market which enables novices to create images, even ani- 
mated images, on the computer screen. And although the avail- 
able software is often suitable for the most challenging require- 
ments of the user, there are those instances when new software 
must be developed to achieve the unique objectives envisioned 
by the creative entreprenuer. Very likely that is what has hap- 
pened to those whose software the reader may currently be using. 

So, in this chapter we present some of the mathematics of 
computer graphics, mostly using matrices, but with special at- 
tention given to quaternions and the quaternion rotation op- 
erator alternative, whenever rotations are required. We first 
introduce canonical transformations which are employed in the 
graphics generating milieu, all in the context of homogeneous 
coordinates. We do this first in two-dimensions, for pedagogi- 
cal reasons, since it is much easier to visualize what happens in 
R2.   In R2 we will also consider some of the special problems 

339 
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associated with concatenation and the importance of order in 
sequences of transformations on point-sets. We then extend all 
of these basic ideas to R3. Finally, based upon this background, 
we outline a strategy for the development of the Virtual Reality 
required in the design of a Flight Simulator. 

12.2 Canonical Transformations 

There are three canonical transformations which are fundamen- 
tal to the creation of two-dimensional images (graphics) which 
represent three-dimensional objects. These are 

• Scale 

• Translation 

• Rotation 

Transformations, other that these, such as 

• Skews 

• Reflections 

• Distortions 

may be produced by merely inserting special entries in the three 
primary transformations, as may be easily verified. 

12.3 Transformations in R2 

We first define the three canonical transformations in R2. From 
this two-dimensional vantage point, we introduce homogeneous 
coordinates. We may then extend these results to the generation 
of images in R3, along with the mathematics of perspective. In 
general we shall use P to designate the initial point-set and P' 
to denote the transformed point-set. 
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12.3.1    Scale in R2 

By the Scale Transformation we mean that, given two scale fac- 
tors, S\ and 52, we have the mapping 

{x,y) P' = (S1x,S2y) 

This transformation simply modifies independently the horizon- 
tal and vertical dimensions of an object in R2. For example, if 
we let Si = 3 and S2 = 2, the unit square shown in Figure 12.1 
is transformed into a 3x2 rectangle, as indicated. 

Y 

O ■►X 

This scaling example shown 
in Figure 12.1 is formu- 
lated as some specified scal- 
ing transformation, S. 

Figure 12.1: Scale 

The scale transformation example may be conveniently rep- 
resented in matrix form. In our example, we may write 

P' 

P' 

SP 
Si    0 
0    S2 

x 

y 

where 

S 
3   0 
0   2 

P   —   original point-set 

P'   =   modified point-set 



342 CHAPTER 12.   COMPUTER GRAPHICS 

12.3.2    Translation in R2 

By Translation we mean that an entire set of points which com- 
prise an object are shifted (without dimensional change) within 

-►X 

Note! 
The translation transformation is 
an additive one, so that matrix ad- 
dition is required. 

Figure 12.2: Translation 

the viewing frame, in accordance with the familiar rule 

P=(x,y)     —*     P' = (x + h,y + k) 

Here h and k are the horizontal and vertical displacements. 

Then, in matrix form, for the translation example shown in 
Figure 12.2 we may write 

P' = P + T 

where 

T = 2.5 
1 

So    P' = P + 
2.5 ' 

1 

where 

P = original point-set 

P' = t ransl ated i set 
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12.3.3    Rotation 

As was suggested in Section 2.5.2, by a Rotation we mean that 
an entire point-set is subjected to a point rotation about the For   the    rotation   example 

shown in Figure 12.3 we write 

P'    = 

where 

R   = 

P   = 

P'    = 

RP 

cos 6    - sin 6 
sin 6     cos 6 

original point-set 

rotated set 

►X 

Figure 12.3: Rotation 

origin through an angle 9, in accordance with the rule 

P = (x, y)     —     P' = (*', y') 

where   x'   =   x cos 9 — y sin 9 

y'   =   x sin 9 + y cos9 

We write this transformation in matrix form, as shown in the 
margin. We ask at this juncture a question: 

What if we intended that the square be rotated about 
its 'upper left' vertex? — or for that matter, how 
would one rotate the indicated square about any spec- 
ified point? 

Using the transformations, R and T, just described, we sim- 
ply translate to the origin, rotate, then translate back. We 
note, however, that S and R are both multiplicative operations, 
whereas T is an additive operation. To make these operations 
all multiplicative, we introduce Homogeneous Coordinates. 
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12A    Homogeneous Coordinates 

In the foregoing three canonical transformations, we note that 
the matrix products 

RS    and    SR 

make sense, whereas the products 

RT    TR    TS    ST 

are not denned, or do not produce sensible results. However, by 
using homogeneous coordinates, borrowed from Projective Ge- 
ometry, we can concatenate the three canonical transformations 
multiplicatively in whatever order suits a particular application. 

The homogeneous coordinate representation for the point (x, y) 
in R2 is the triplet (x,y, 1), that is 

(z.y) (x,y,l) 

For the Scale, Translation, and Rotation operators in terms of 
homogeneous coordinates, we will use the same symbols for their 
designation as before, namely, S, T, and R, respectively. We 
have 

for Scale in R2 Homogeneous Coordinates 

S   =   Scale Operator 
Sy    0    0 
0    S2   0 

^001 

so that 

V 
1 

P' SP   = 
5i    0    0] X " xSx ' 
0    S2   0 y = yS2 

0     0    1 l l 
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for Translation in R2 Homogeneous Coordinates 

T   =   Translation Operator 

so that 

1 0 h 1 
0 1 k 
0 0 1 

y 
i 

=   F TP   = 
1   0   h ' X x + h 
0   1   A; y = y + k 
0   0   1 l 1 

for Rotation in R2 Homogeneous Coordinates 

R   =   Rotation Operator 
cos 9   — sin 9   0 
sin 9     cos 9    0 

^0 0        1 

so that 

x 

y' 
l 

=   F RP   = 
cos 9 
sinö 

0 

- sin 9 0" X 

cos 9 0 y 
0 1 l 

x cos 9 — y sin 9 
y cos 9 + x sin 9 

1 

We next consider in some detail the question which was raised 
earlier, that is, 

How do we concatenate these operators, and in what 
order, to achieve a specified objective? 

In the next section we answer this question by massaging a con- 
crete example. 

The inverses of the homogeneous 
operators are defined as follows: 

Inverse Scale 

R -l     _ 

Inverse Translation 

1     0     -h 
0     1     -k 
0    0      1 

Inverse Rotation =  fl( 

cos 6      sin 8 0 
— sin 8    cos 6 0 

0            0       1 
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12.5    An Object in R2 Transformed 

Consider the unit square P and the rectangle P' as illustrated 
in Figure 12.4. What we want to do is to define a sequence of 
transformations which will take the point-set defined by P into 

Figure 12.4: Operation on Unit Square 

the point-set defined by P'. Here the point-set P' is a 2 x 1 rect- 
angle rotated approximately 30 degrees clockwise and translated 
to the point (2,1), as shown. 

At the outset, it is not entirely clear what the transforma- 
tions in the desired sequence should be, or in what order they 
should occur. It might seem at first glance that the first opera- 
tion should be an appropriate scaling transformation, producing 
a 2 x 1 rectangle, followed by the 30 degree clockwise rotation. 
The third transformation, to achieve our goal, could be an ap- 
propriate translation. However, this last translation from the 
previous rotated state might not be desirable because it could 
require some additional coordinate computations. 

Alternatively, we might think a better plan would be to fol- 
low the scale transformation by a unit vertical translation. Our 
goal would then be achieved by a 30 degree clockwise rotation 
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about the point (2,1). But, as we have observed, rotations about 
points other than the origin also require more translations. We 
avoid these difficulties by introducing the sequence which we 
now describe. 

X X 

(2,1) 

X 

Figure 12.5: Transformation Sequence 

The first transformation is a translation T\, which takes the 
set P one unit to the left, as in Figure 12.5a. Next, in Fig- 
ure 12.5b, the transformation S scales this translated set P into 
the desired 2x1 rectangle. Third, in Figure 12.5c, the transfor- 
mation R rotates this rectangle 30 degrees clockwise. Finally, 
the origin of this rotated set is translated by T2 to the desired 
point (2,1), as in Figure 12.5d. The composite transformation 
is, P' = MP where M = T2RST!. 

P" = T2 R S T, P 

Operation on Unit Square 

We take the Set of Points defined 
by P into the set of points denned 
by P' 

The sequence of transformations 
which are used to accomplish 
the stated objective in the figure 
above, are defined as follows: 

S    =    Scale operator 

Ti     = 

2 0 0 " 
0 1 0 
0 0 1 

Translation#l 

1 0 -1 
0 1 0 
0    0      1 

T2     =     Translation#2 

1 0 2 ' 
0 1 1 
0 0 1 

R    = Rotation 

cos 6 sin 0 0 
— sin 0 cos 9 0 

0 0 1 

6  R:  -30 degrees 

The order of operations in this sequence is very important, 
as we demonstrate in the next section. 
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12.6    Concatenation Order in R2 

Consider again the unit square input point-set P as represented 
in the previous section. The sequence in Figure 12.6a is our ear- 

The transformations which are 
used in each of the sequences in 
Figure 12.6 are defined as follows: 

S    =     Scale operator 

7i     = 

R    = 

2 0 0 " 
0 1 0 
0 0 1 

Translation#l 

1 0 -1 
0 1 0 
0    0      1 

T2     =    Translation#2 

1 0 2 ' 
0 1 1 
0 0 1 

Rotation 

cos 9 sin 9 0 
- sin 9 cos 9 0 

0 0 1 

0  ss  — 30 degrees 

Pb=ST,P 

P; = T2 S T, R P 

►X 

Again, as an exercise the reader 
should verify that these sequences 
indeed do produce their respective 
images. 

Figure 12.6: Concatenation Order 

Her sequence of Figure 12.5. Two alternative sequences, also il- 
lustrated in Figure 12.6, demonstrate that order in the sequence 
is extremely important.   In Figures 12.6b and 12.6c the order 
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of the operations are intentionally permuted, to demonstrate 
results that clearly do not meet our stated objective. oO, watch that order! 

12.7    Transformations in R3 

In a manner analogous to the 2-dimensional case we introduce 
homogeneous coordinates for points in R3. The homogeneous 
coordinate representation for a point (x, y, z) in R3 is the 4- 
tuple (x, y, z, 1), so that all points of objects in R3 undergo the 
mapping 

(x,y,z)     —►     {x,y,z,l) 

The homogeneous coordinate representations for Scale, Transla- 
tion, and Rotation in R3 again are designated using the same 
symbols, namely, S, T, and R, respectively. We have 

The homogeneous inverse opera- 
tor are defined as follows: 

Inverse Scale 

" S~l        0 
o     s-1 

0         0 
0         0 

0 
0 

0 

0 
0 
0 
1 

for Scale in R3 Homogeneous Coordinates 

S   =   Scale Operator 

Si 0 0 0 
0 S2 0 0 
0 0 53 0 
0 0 0 1 

_1 = Inverse Translation 

10 0 -io 
0 1 0 -j/o 
0 0 1 -zo 
0    0    0       1 

so that 

r x'i ' X ' \ Si 0 0    0 1 " X 

y' 
z' 

= s y 
z 

= 0 
0 

s2 
0 

0    0 
s3 0 

y 
z 

1 1 0 0 0    1 1 

R;
1 Inverse Rotation =  R\ 

«3 

0      0      0 

Thus, under a scaling transformation with scale factors, Si, S2, 
and S3, we have the mapping 

P= (x,y,z,l) (S1x,S2y,S3z,l) = P' 
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for Translation in R3 Homogeneous Coordinates 

T   =   Translation Operator 

1   0   0   x0 

OlOi/o 
0   0   1   z0 

_0   0   0    1 

so that 

[x'l ' x ' 

y' 
z' 

=   T y 
z 

= 

. 1 . . 1. 

1   0   0   x0 ' " x ' 
0   1   0   y0 y 
0   0   1   z0 z 
0   0   0    1. . 1. 

Thus, under a translation transformation with displacements, 
x0, ?/o> and z0, we have the familiar mapping 

P= (x,y,z,l) (x + x0, y + 2/o, z + ZQ, 1) = P' 

for Rotation in R3 Homogeneous Coordinates 

R   =   Rotation Operator 

Hi   rn   r13   0 
^21   r22   r23   0 
»"31     »"32    »"33     0 
0     0      0    1 

so that 

\x' 1 ' x ' 
y' 
z' =   R y 

z 
= 

. 1 . . 1. 

»"11 »"12 »"13 0' " X 

»"21 »"22 7-23 0 y 
»"31 »"32 »"33 0 z 
0 0 0 1 1 

Here the 3x3 submatrix with the r^ entries must represent an 
appropriate rotation matrix in R3. That matrix, of course, is 
peculiar to the particular application. 
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Most applications in R3 will involve some sequence of the 
transformations we have just described, as was the case in R2. 
At the risk of being overly pedantic, we now give a simple de- 
tailed example which uses each of these three transformations. 
We are given a cube, each of whose sides has length 2, which is 
centered at the point (4,2,3) with all edges parallel to the axes 
of the reference coordinate frame. Our objective is to 

Transform the cube into a vertical 2x2x6 par- 
allelepiped, still centered at (4, 2, 3); then rotate the 
object 60 degrees clockwise about an axis which con- 
tains the center, and which is parallel to the vector 
u= (1,1,1). 

To do this, we first translate the cube to the origin, then scale 
it to give the desired parallelepiped. We then rotate the object 
appropriately, and finally translate it back to the original point. 

In this simple application we need only to apply these trans- 
formations to the vertices of the cube. In order to facilitate the 
required matrix algebra, we characterize the cube by a 4 x 8 
matrix, 

P=  [vfc|A; = l,2,---,8] 

Here, the elements of the kth column, vfc, are the homogeneous 
coordinates of the kth vertex of the given cube, each of which are 
known. Moreover, use of the index k suggests possible ordering 
of these vertices for imaging purposes. 

We first translate the cube to the origin, by means of the 
transformation, T, where 

TP   = 

1 0 0 -4 1 
0 1 0 -2 
0 0 1 -3 
0 0 0 1 

p = Pi 

cube translated to the origin 
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Next, the translated cube, as characterized in matrix Pi is sub- 
jected to the Scaling Transformation, S, to make a vertical par- 
allelepiped centered at the origin. The eight new vertices are 
given by the expression 

SP,   = Pl = P2 

10 0 0 
0 10 0 
0 0 3 0 
0 0 0 1 

= a vertical parallelepiped 

centered at the origin 

Next we need to rotate this parallelepiped about an axis (through 
the center of the object), which is parallel to the vector u = 
(1,1,1). This may be accomplished by a sequence of two frame 
rotations such that the x-axis defines the required axis of rota- 
tion. We follow this by the required 60 degree rotation about 
that axis. 

The first two frame rotations, R2R1, which remind us of 
the familiar Tracking sequence, take the frame x-axis into the 
required axis of rotation. This is followed by a rotation R3 about 
this axis, so that 

P3   —   R3R2R1P2 

gives the final orientation of the parallelepiped. 

Here 

R2R1   = 

V2/V5   0   -1/V3   0 ' ' \/2/2     1/2     0   0 
0        10        0 -1/2   v/2/2   0   0 

l/\/3    0   v^/v^   0 0          0       10 
0        0        0        1 0          0      0   1 

makes the x-axis the required axis of rotation, and 
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1 0 0       0 
0 1/2 -V3/2   0 
0 \/3/2 1/2      0 
0 0 0        1 

1 0 0 4 
0 1 0 2 
0 0 1 3 
0 0 0 1 

A3 

rotates the object 60 degrees, clockwise. 

Finally,  we translate this rotated parallelepiped back to the 

original point, by the operation 

P4   =   T_1P3        where 

i-i 

returns the transformed cube, with its new scaling 

and orientation to its original location (4, 2, 3). 

In summary, the properly ordered sequence which accom- 
plishes this stated objective is: 

p4 = T-1R3R2RiSTP = MP 

where M is the indicated product. In practice we would or- 
dinarily compute this matrix product before operating on the 
point-set. 

As in JR
2
, we introduced homogeneous coordinates in order 

to make the translation, scaling, and rotation operators mul- 
tiplicative — but again, the price we pay for this is that the 
algebraic dimensionality has gone from three to four, and all 
points of objects in R3, are defined by 

(x,y,z) {x,y,z,l) 
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12.8    What about Quaternions? 

To this point, all transformations were represented strictly in 
terms of matrices and matrix algebra. In this section we ask 

Are quaternions as easy to apply in these applications 
as the conventional rotation matrix? 

It is true that in order to make translation (which is intrinsi- 
cally an additive process) multiplicative, along with scaling and 
rotation, we had to introduce homogeneous coordinates. Ho- 
mogeneous coordinates, as we have noted, are 4-tuples, as are 
quaternions. This suggests that there might be a way of doing 
scaling and translation in terms of some sort of quaternion op- 
erator. However, at this point there seems to be no such way; 
quaternions and their rotation operators are algebraically in- 
compatible with homogeneous coordinates. However, there is at 
least one situation in which quaternion are helpful. 

In the foregoing example we required the rotation of an ob- 
ject about a specified axis, with direction v = (1,1,1), through 
a specified angle, 60 degrees. The quaternion required, in this 
instance, is immediately known to be 

7T 7T V 
q = cos —h u sin —    where    u = 7—- 

6 6 |v| 

The components of q can then be used to determine, quite effi- 
ciently, the required rotation matrix, as in Equation 7.17. The 
resulting matrix may then be used in a homogeneous coordinate 
format. An important question which remains, however, is 

How can we produce appropriate two-dimensional screen 
images of these three-dimensional objects? 

In the following sections, we define some of the projections which 
are commonly used to produce these images. 
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12.9    Projections B? -* R2 

Now that we have defined the operators which enable us to es- 
tablish and/or change the position and/or orientation of three- 
dimensional objects, we next consider methods and options for 
projecting an image of this object on a two-dimensional screen. 
There are two general classes of planar projections, namely, 
Parallel and Perspective (not parallel). In such projections, we 
emphasize that Lines always map to Lines. 

By a Parallel projection we mean any projection in which the 
lines of projection (taken to be the viewing direction) are 
parallel, as in Figure 12.7. 

General 

Axonometrie 
Projection     n 

Figure 12.7: General and Axonometrie Projections 

By a Perspective projection we mean a projection in which 
the lines of projection intersect in at least one point, called 
a point of perspective (see Figure 12.8). 

In the following two sections we present three sub-classes of each 
of these two kinds of projections. 
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a=ß = Y 

Isometric 
Projection 

The Isometric Projection is in a di- 
rection which shortens each axis in 
the viewing frame equally. 

12.9.1    Parallel Projections 

By a General projection we mean a parallel projection onto a 
plane where the orientation of the plane, relative to the 
viewing direction, is unrestricted. 

By an Axonometrie projection we mean a parallel projection 
onto a plane in which the orientation of the plane is normal 
to the viewing direction. See Figure 12.7. 

By an Isometric projection we mean an axonometric projec- 
tion such that the viewing direction is parallel to the vector 
v = [1,1,1] defined in the object frame. Thus the three 
direction cosines of the viewing direction are equal. 

One-Point Perspective 
The One-Point Perspective has a 
point at infinity, straight ahead. 
To illustrate this notion, a tunnel 
is shown with a person near the 
end of the tunnel. The entrance to 
the tunnel is parallel to the projec- 
tion plane. 

12.9.2    Perspective Projections 

A perspective projection is classified as one-point, two-point, or 
three-point, depending upon the number of focal points (points 
of perspectives) it has. 

A one-point perspective has a Surface of the object parallel to 
the projection plane. The entrance to the tunnel, illus- 
trated in the margin, is parallel to the projection plane. 

Figure 12.8: Two-Point Perspective 
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A two-point perspective has an Edge (but no surface) of the ob- 
ject parallel to the projection plane. In Figure 12.8 the 
vertical edges are parallel to the projection plane. 

A three-point perspective has no Edge of the object parallel to 
the projection plane. This is the perspective one gets, say, 
when flying low over a city with tall buildings. 

Figure 12.9: Three-Point Perspective 

For our purposes the computer screen will always be the local 
projection screen. The images of three-dimensional objects on 
the computer screen will manifest, in general, a three-point per- 
spective. At any one instant, of course, the perspective depends 
upon the relative disposition of the view-frame and the object in 
the world-frame. An object in motion, of course, may at times 
encounter positions where an edge or even a primary surface is 
parallel to the projection screen. 
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Virtual Reality 
By Virtual Reality we mean the 
creation of an artificial environ- 
ment which simulates, for the 
viewer, some actual environment. 

12.10    Coordinate Frames 

The mathematics for a perspective transformation and for the 
creation of images for Virtual Reality applications requires that 
we define and relate some independent orthonormal frames. 

• World Frame — The world frame is a primary reference 
frame, in which all other coordinate frames are defined. 
The relative positions and orientations of these frames may 
thus be directly or indirectly established. 

Figure 12.10: Objects in World Frame 

Object Frame — Each object is defined as a point-set 
in its object frame. Object frames are independent of the 
world frame and of each other, and are not necessarily 
fixed in time. The parameters P and p, illustrated in Fig- 
ure 12.10, define the position and orientation of an object 
with respect to the world frame. Given these parameters 
for two objects, their relative position and orientation, Q 
and q, may be determined. 
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• Image Frame — The image frame (or projection frame), 
defined in greater detail in the next section, is simply a 
coordinate frame whose xy plane contains the planar image 
we seek, and whose z-axis contains the observers Eye. 

Figure 12.11: Flight Simulator Coordinate Frames 

A significant Virtual Reality application, which involves these 
frames, is that of a Flight Simulator, whose mathematical model 
we will develop next. These frames, along with the position of 
the observer's eye are directly or indirectly defined in the world 
frame by means of vectors a, b, e, and u, as illustrated in Fig- 
ure 12.11. First, however, we must introduce the perspective 
transformation needed to take the observed points into the Im- 
age Plane — in perspective. 
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12.10.1     Perspective — Simple Case 

We begin with the simple case illustrated in Figure 12.12. We 
place the eye at the origin of the world frame, with the viewing 

o P = World 
Point 

Figure 12.12: A Point in Perspective 

direction taken as the positive Z-axis. We take the image plane 
to be D units above and parallel to the XY-plane. Suppose that 
in homogeneous coordinates we have p = [x, y, z, 1]. Then, from 
similar triangles, it is clear that p in the world frame maps into 

q =   [—x,—y,Dtl]  =  —[x,y,z,—] 
z       z z JJ 

in the image plane. In matrix notation this Perspective Trans- 
formation may be written 

q =  Qp   =   — 

"10     0     01 " X 

D 0   10     0 V 
z 0   0     10 z 

. 0   0   1/D   0 . . 1 
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12.10.2    Parallel Lines in Perspective 

Another simple case which provides further insight into the per- 
spective transformation is the view one gets of parallel lines. 
The horizon in the world frame (where all parallel lines meet) 

E = Center of Projection 

Figure 12.13: Parallel Lines in Image Plane 

is represented by a finite set of points in the image plane — a 
very useful notion borrowed from projective geometry. See Fig- 
ure 12.13. Note in particular that the image of all parallel lines 
meet at points on the horizon in the image plane. 

The line which represents the horizon in the image plane is 
readily determined geometrically by finding the intersection of 
the image plane with a plane through point E parallel to the 
world XY plane. 

We now consider the sequence of operators required for the 
more general case, that of projecting arbitrary images which are 
defined in their respective frames, first into the world frame and 
then into the image frame — in perspective. 
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We emphasize that it is helpful to 
view the vectors, in the minds eye, 
as free vectors, especially after the 
various vector operations. 

12.10.3    Perspective in General 

For the general case, we define the Image Frame or Projec- 
tion Frame as a right-handed xyz orthonormal coordinate frame, 
where the xy plane is the Image Plane. See Figure 12.14. The 
unit vector N is normal to the Image Plane. The point E is the 
Center of Projection, defined in the World Frame with the 'eye' 
at point E 'looking' in the negative N direction. Point E is on 

Center of Projection (eye) = E 

qk = Image Point 

pk = World Point 

rk = pk- E 

P = parallelepiped vertices 
= {p ln=l,2,-,8} 

Figure 12.14: Object P in the World Frame 

the z-axis of the image frame and is D units above the Image 
Plane. The orientation of the image frame with respect to the 
world frame is specified by a rotation operator R, whereas the 
position of the image frame is governed by the parameters E and 
D. See Figure 12.10.3, in the margin. 
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The object of our concern is again a parallelepiped defined 
by the point-set P = {pk\k = 1,2, • • • 8} in the world frame. To 
create the image of P we find the image qk of each pk, then join 
these image points with appropriate line segments. 

Our strategy is first, translate the origin of the world frame 
to the point E, using a translation T; then, using the rotation 
operator R, rotate the the translated world frame so that its ori- 
entation coincides with that of the image frame. This reduces 
the required perspective transformation to the simple case of the 
previous section. The composite transformation M = QRT is 
then our general perspective transformation. 

In matrix notation, we have 

Pfc 
For   T 

a point defined in the World Frame. 

Translation Matrix 
1   0   0   -Ex 

TVk   = 
—Ei, 

■Ez 
Pfc 

0 1 0 
0 0 1 
0   0   0      1 

which translates the World Frame origin to the point E. 

For   R   = ■ Rotation Matrix or Quaternion Operator 

0 

RTpk   = 
R 

0    0    0 

0 
0 
1 

Tpk (12.1) 

or       = 

0 

q*(Tpk)q 

0 0 

0 
0 
0 
1 

(12.2) 

which rotates the World frame to the Image Frame. We are 

now ready for the Perspective transformation. 

xy Plan 

q = ßcol [x, y, z, gj 

p =col [x, y, z, 1] 

Figure 12.10.3 

An image, qt, of the points, p^ 
which are defined in the World 
frame, are shown projected in per- 
spective into the Image Plane. 
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We let Q   =   Perspective Operator 
r i o    o    oi 

D 0   10     0 

Zk 0   0     10 
. 0   0   1/D   0 . 

which then takes points p^ into the points qfc in the image plane 

r i o    o   oi 

That is,  qfc   =   — 
Zk 

0   10     0 
0   0     10 

. 0   0   1/JD   0 . 

RTpk                       (12.3; 

=   QR Tpk (12.4; 
=   the corresponding point in the image plane 

Taking the entire set P = {pk\k = 1,2, • • • 8} through this se- 
quence gives an image of the remote object, in perspective. 

We note that qt is of the form 

r       D D     r,      1 
qfc = [Xk—,2/fc—,D, lj 

Zk        Zk 

and that only the ordered pairs formed from the first two com- 
ponents of each 4-tuple are required to make the image in the 
image plane. 

12.11     Objects in Motion 

We now simulate the motion of an object P, such as the air- 
craft shown in Figure 12.15. Here the aircraft is defined by the 
point-set PQ = {\>k\k = 0,1, • • • n}, whose geometric center is at 
the origin. We will simulate the flight of the aircraft kinemati- 
cally, that is, by subjecting the point-set P0 to an appropriate 
sequence of incremented translations and/or rotations. At any 
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step in the sequence, we let P be the point-set which represents 
the current position and orientation of the reference object, P0, 
say, at time t. We let P' be the incremented point-set which 
describes this object at time, t + At. 

Further, at any step in the sequence, the position of the ob- 
ject is specified by a translation operator T which takes the 
world frame origin to the current geometric center, say, the point 

Center of Projection (eye) = E 

qk = Image Point 
pk = World Point 

= {pklk = 0, I,- ,n} 

Figure 12.15: Object P in Motion 

(xo,yo,z0). The matrix form for T is 

T   = 

1 0 0 Xo " 

0 1 0 Vo 
0 0 1 zo 
0 0 0 1 

(12.5) 
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Motion of objects in computer 
graphics is always accomplished 
by a sequence of small incremen- 
tal values for the parameter At. 
Adopting the notation used in 
computer science, we write succe- 
sive translation operators as 

Tnew = T&tToid = ATTOU 

In like manner, the orientation of the object is specified by a 
rotation operator, R, defined by 

R   = 
RQ 

0    0    0 

0 
0 
0 
1 

(12.6) 

Thus the current state of the object, in position and orientation 
in the world frame, is described by the point-set, P, where 

P = TRPo 

In what follows, we consider how these operators, T and i?, 
may be modified in order to show the object in motion — in 
translation and/or rotation, incrementally. 

V=    [VX,Vy,VZ] 
Object Translation 

In the equation, on the right, we 
assume no rotation is required 

r i o o vxAt' r i o o Az 
0     1     0    VyAt 
0   0   1   vzAt 

= 
0   1   0   Ay 

0   0   1   Az 

.000      1 .000     1 

12.11.1    Incremental Translation Only 

We simulate an object moving incrementally in a direction spec- 
ified by a velocity vector v = [vx,vy,vz] using an incremental 
translation operator defined by the matrix 

(12.7) 

for some very small time increment, At. The velocity vector v 
may vary with successive increments. A new translation is then 
defined in terms of the current or old translation by 

Tnew 
= AxT0id 

for each successive AT. That is, for a given velocity vector v = 
[vx,vy,vz], and for each successive Ar, the new incrementally 
translated point-set is given by 

P'= ATp =  ATToldP0 = TnewP0 

The new incrementally translated image is then obtained from 
P' using the perspective transformation of the last section. 
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12.11.2    Incremental Rotation Only 

In free space an object rotates, in general, about its center of 
mass. So, for our purposes we assume that the orientation of the 
object P, or more specifically the orientation of its coordinate 
frame, is defined about this center by either a rotation matrix 
flora quaternion r. These two alternatives are each considered 
separately in what follows. 

Because the current position of the object to be rotated is 
not, in general, at the origin of the world frame, the center of 
the object must first be translated to the origin. The object is 
then rotated about this center, and translated back to its former 
location. If A^ is the incremental rotation matrix, and P is the 
current point-set {not P0), then the new incrementally rotated 
point-set P' is given by 

TRT-ip 

Rnew    =    ARR0ici 

1     0     0 

where 

P' 

R 

(12.8) 

(12.9) 

Here    T^1   = 

T 

0 
0 
0 

1 
0 
0 
0 

~x0 

0 -y0 

1 —z0 

0      1 

and     R   = 

1 
0 
0 

0 
1 
0 
0 

Rn 

0      0      0 

0 
0 
1 
0 

XQ 

Vo 

Z0 

1 

0 
0 
0 
1 

(12.10) 

(12.11) 

(12.12) 

The details of the rotation transformation R have not yet been 
specified. However, if the specified angular rotation rate of the 
object is u> about an axis, u, say, in the body frame, then the use 
of a quaternion rotation operator immediately comes to mind. 

The precise simulation of the 
forced motion of an object, partic- 
ularly one with unequal principle 
moments, requires input from an 
appropriate mathematical model 
which takes into account the laws 
of dynamics which govern these 
matters. For example, rotation of 
the parallelpiped about a principle 
diagonal introduces a couple which 
is not taken into account in a kine- 
matic rotation. 

If the linear velocity of the object 
is not zero then incremental trans- 
lation will also occur during this 
computational interval. 
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12.11.3    Quaternion Incremental Rotation 

The orientation of the object P0 we define with a quaternion, r. 
As before, the position of the object is dictated by the transla- 
tion, T. The current rotated state P is then 

T{r*P0r) (12.13) 

We increment the orientation, using an incremental quaternion, 
call it s, where s = cos uAt + u sin uAt. Then the incremented 
quaternion is given by rnew where rnew = r0idS. 

It is important to note that if the 
rotation of an object is about some 
specified axis and is not a small 
angle rotation then to use a ma- 
trix rotation operator may not be 
the optimal choice. Given the axis 
and the angle of rotation, finding 
the rotation matrix is possible (see 
Equation 7.16) but tedious. 

Finally, the incremented point-set, P' is computed as 

P'   =   T{s*r*oldPQrolds) 

=   T(r*newP0rnew) (12.14) 

In practice, the incremental rotation angle, wAt is very small, 
so we may write 

s    «    1 + uuAt   =    1 + A 

where     A   =   Au = Axi + Ayj + Azk 

and     IAI   <   1 

(12.15) 

Alternatively, the components of this new incremented quater- 
nion, r = r0 + iri + jr2 + kr3 = rnew, may be used to define 
the elements of an equivalent new composite rotation matrix, 
Rnew = Rnew(ro,ri,r2,r3), as in Equation 7.7. This equivalent 
rotation matrix, whose elements then are known functions of 
the components of the corresponding quaternion, rnew, will in- 
crementally modify the last rotation state of the point-set P. 
That is to say, for the incrementally rotated point-set, P', using 
this matrix, we may write 

P      —    1 RnewPo 
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12.11.4    Matrix Incremental Rotation 

Suppose, on the other hand the incremental rotation is speci- 
fied as some linear combination of incremental body axis rates, 
WJJ, uv, and uz, about the principle axes of the body, P. Us- 
ing Equation 4.4 and small angle approximations, we get an . 
incremental rotation matrix, Aß, of the form 

AR   = 

where 

1 A3     -A2 01 
-A3 1       Ai 0 
A2 -Ai      1 0 
0 0        0 1 . 

Ai = <jüx/S.t 

A2 =       OjyAt 

A3 = ujzAt 

(12.16) 

In writing the matrix, Aß, we 
have used the small angle approx- 
imations 

sin 6     =    0 

cos 0     =     1 

and     0n     =     0    n > 2 

for small angle, 0 

The off-diagonal entries in this matrix are small angle rotations 
about the indicated body axes. Again we write 

R    =     Rnew   —    AüR-old 

and so     P'   =   TRT~lP = TRP0 

The simultaneous motion of an object in both translation and 
rotation will involve the appropriate incremental combination 
of the foregoing. The need for this generalized motion in both 
translation and rotation becomes more apparent as one further 
develops the graphics software necessary to make the virtual re- 
ality required by a Flight Simulator more real. 

In the next section we introduce a simplified control-law for 
the implementation of an aircraft flight control system. And 
finally we suggest an enhanced virtual reality perspective which 
offers the possibility of depth perception of objects within the 
cockpit by simulating binocular vision. 
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12.12    Aircraft Kinematics 

The motion of the aircraft (see Figure 12.16) is generally mod- 
elled or simulated in accordance with a set of differential equa- 
tions which represent the aircraft. These equations usually are 
written in terms of the appropriate aerodynamic coefficients 

Throttle 

Ailerons 

Elevators 

Airspeed 

Roll Rate 

Pitch Rate 

Figure 12.16: Model of Aircraft 

which characterize the aircraft of interest. If we followed this 
approach, we could study such matters as the stability and con- 
trol of a specific aircraft. These concerns, however, are beyond 
the scope of this overview. 

O Object in 
World Frame 

Figure 12.17: Aircraft and World Frames 

Instead we consider the relative position and orientation of an 
Aircraft in the World Frame as represented in Figure 12.17. 
Here, P is the position matrix and the orientation operator is 
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defined by the quaternion p. The vector a locates the remote 
Aircraft in the World Frame. The vector u defines an arbitrary 
point of interest in the world frame; the vector 

v = u — a 

defines this same world point in the aircraft frame. 

Aileron 

Elevator- 

Throttle - 

Aircraft 
Control 
Law 

CO 

V^ 

Aircraft 
Kinematic 

Model 

p = Aircraft Orientation Quaternion 
a = Aircraft Position Vector 

co = Aircraft Angular Rate Vector 

V = Aircraft Velocity Vector 

Figure 12.18: Kinematic Flight Control System 

We adopt the kinematic model shown in Figure 12.18 where with 
a simple Control Law and a throttle and a 'joy-stick', we can 
control the aircraft linear velocity V, and the angular velocity, 

u = \UJX + }u>y + kuz 

of the aircraft, both defined in the aircraft body frame. In our 
simplified kinematic model we also make the aircraft 'turn rate', 
ip, somehow linearly consistent with 

■0   =   /(V)tan^        that is, 

=   /W       or 
=   cV0       for \(f>\ < TT/4 

and for some proportionality constant, c. 
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This simple expression gives turn rate, ip, as a linear function 
of aircraft bank angle, (f>, and will suffice for modest aircraft 
maneuvers. We now sketch a strategy for the analysis of impor- 
tant concerns encountered in the design of the remainder of the 
Flight Simulator System. This system simulates a view of the 
external world environment as seen by the pilot of the aircraft. 

So, consider the pilots viewing environment as illustrated in Fig- 
ure 12.19. It is important to note that the vector magnitudes |b| 
and |e| are in general negligibly small compared to the magni- 
tudes |a|, |u|, |v|, or |w|. This means that if b is negligible, the 
vector c approaches a, and the view-point vector, v, from each 
eye approach v. Therefore, for world points, the vector w may 
be regarded as being equal to the vector v, or that the remote 

Object in 
World Frame 

Figure 12.19: The Pilot Helmet-Sight System 

position of the helmet frame and that of the aircraft frame may 
be regarded as one and the same. 
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But it is not quite so simple for relative orientations. Al- 
though the motion of the aircraft is influenced in important 
ways by the orientation of the aircraft, the appropriate view 
of the world points from the aircraft depends not only upon the 
orientation of the aircraft, but also upon the orientation of the 
helmet frame. 

The relationship between these two frames has already been 
discussed in the Six degree-of-freedom Transducer, described in 
Chapter 11. This transducer represents an important compo- 
nent in the development and implementation of new Virtual Re- 
ality concepts and applications. Such transducers are currently 
used by the various branches of The United States Armed Ser- 
vices in a variety of Visually-Coupled Control Systems. In one 
such application the position and orientation of the Pilot's head 
(Helmet), and therefore her Line-of-Sight (LOS), is measured 
with respect to the Aircraft Frame (Cockpit). This Transducer 
and Sight, together called the Helmet-Mounted Sight (HMS), 
completely relates the Pilot's Head Frame (LOS) and the Air- 
craft Frame. 

A Transducer is a device which 
converts an excitation in one com- 
ponent into useful information in 
another component. In this case, 
a sequence of polarized excitations 
applied to a Source produces po- 
sition and orientation information 
at the Sensor. 

In the next section we consider the relative position and/or 
orientation of several objects, as we continue to sketch the de- 
velopment and implementation of an Aircraft Flight Simulator. 
This simulator entails a computer generated virtual reality for 
a pilot who is wearing a helmet equipped with the Helmet- 
Mounted Sight (HMS). Along with a kinematic model which 
will govern the aircraft flight patterns, we now consider possible 
strategies for creating Computer Generated Images of virtual 
reality, for use in such a Flight Simulator. 
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12.13    n-Body Simulation 

The process which takes the point-sets which are defined in the 
cockpit frame into an appropriate binocular view merely requires 
that we use the ideas presented thus far to the two different val- 
ues of the vector e, one for each eye. These two values for the 

Figure 12.20: Frames for Virtual Reality 

vector e define the location of each eye in the Q,q frame, with 
respect to the HMS Sensor. These, in turn, result in two distinct 
view-point vector sets which are used to construct the image for 
the device assigned to its respective eye. 
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The image generator for each eye may be a distinct, ded- 
icated CRT-type imaging device which is fixed to the Helmet. 
As the person wearing the helmet changes her viewing direction, 
the sensor of the HMS detects this change and the computer- 
generated view of the World landscape changes accordingly. See 
Figure 12.20. 

As stated above, because the magnitudes of the vectors |e|, 
and |b|, are usually negligible compared to the world vectors 
|w|, etc., a separate and distinct image need not be computed 
for those images defined by the relatively remote world vectors 
|w|. On the other hand, those vector sets which represent instru- 
mentation, and their time-variation, in the cockpit are computed 
separately for each eye. This affords a depth perception which 
contributes to the realism of the view. 

This chapter merely outlines an approach to the potential 
concerns one might encounter in the design and development of 
instrumentation which will yield a virtual reality environment. 
Hopefully, however, this overview presents enough to enable the 
reader to understand how such a development might proceed. 
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